Innovative technological advancements in solving real quadratic equations: Pioneering the frontier of mathematical innovation
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.08Keywords:
computational mathematics, quadratic equations, symbolic computation, numerical methods, interdisciplinary collaboration, technological advancementsDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The advancement of computational methodologies in solving real quadratic equations has emerged as a focal point in contemporary mathematical research. This study explores the efficacy of innovative technological tools and interdisciplinary collaboration in revolutionizing quadratic equation solutions. By integrating symbolic computation systems such as Mathematica and MATLAB with numerical libraries like NumPy and SciPy, alongside specialized software frameworks, researchers have unlocked new avenues for precise and efficient quadratic equation solving. Symbolic manipulation techniques, including factoring, completing the square, and utilizing the quadratic formula, provide closed-form solutions, offering a direct approach to solving quadratic equations. Numerical root-finding algorithms, such as Newton's method and the bisection method, along with iterative techniques like fixed-point iteration, contribute to approximating solutions iteratively, enhancing solution accuracy and convergence rates. Real-world quadratic equations from diverse domains, including physics, engineering, economics, and optimization problems, serve as test cases to evaluate the performance of computational methodologies. Performance evaluation criteria encompass accuracy, convergence rate, computational efficiency, and robustness, ensuring the reliability of computational solutions. Statistical analysis and validation techniques validate the accuracy and reliability of solutions against analytical solutions and established mathematical software packages. Interdisciplinary collaboration between mathematics and computer science drives innovation, pushing the frontier of quadratic equation solving.Abstract
How to Cite
Downloads
Similar Articles
- K Sreenivasulu, Sameer Yadav, G Pushpalatha, R Sethumadhavan, Anup Ingle, Romala Vijaya, Investigating environmental sustainability applications using advanced monitoring systems , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Selva Kumar D, Revisiting the challenges of disinvestment practices and central public sector enterprises (CPSEs): Indian empirical evidence , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Santima Uchukanokkul, Bijal Zaveri, Global student mobility from Southeast Asia and South Asia: Trends, challenges, and policy interventions , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Merlin Sofia S, D. Ravindran, G. Arockia Sahaya Sheela, Clean Balance-Ensemble CHD: A Balanced Ensemble Learning Framework for Accurate Coronary Heart Disease Prediction , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Rahul ., Naveen Sharma, Effect of Suspended Particles on a Couple-Stress Rivlin-Ericksen Ferromagnetic Fluid Heated from Below in a Porous Medium, with Varying Gravity and Magnetic Field. , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Archana Dhamotharan, Kanthalakshmi Srinivasan, Analog Circuits Based Fault Diagnosis using ANN and SVM , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Archana Verma, Role of artificial intelligence in evaluating autism spectrum disorder , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Rupesh Mandal, Bobby Sharma, Dibyajyoti Chutia , Smart flood monitoring in Guwahati city: A LoRa-based AIoT and edge computing sensor framework , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- L. Vamsi Narasimha Rao, P.S.Prakash, M.Veera Kumari, Improvement of power system operation using a novel hybrid optimization method for optimal allocation of facts devices in radial transmission line , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Amala Deepa V., T. Lucia Agnes Beena, Enhancing data imputation in complex datasets using Lagrange polynomial interpolation and hot-deck fusion , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
<< < 15 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.

