Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ)
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.16Keywords:
Smart grid sensors, Hybrid Horse based Zebra optimization, Weighted ensemble based attention-residual network, Power quality, Stacked gated recurrent units, K-Fold cross-validation.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The aim of the proposed method is to solve the difficulties associated with anomaly detection and real-time data processing in complex network systems. The process begins by collecting data from internet of things (IoT) devices and smart grid sensors. Advanced interpolation techniques are used in pre-processing methods to deal with missing data, while the Isolation Forest algorithm is used to find outliers. Ensures data normalization through robust scaling, reducing the impact of outliers. Higher-order statistics such as skewness, kurtosis, and entropy measures, as well as various statistical metrics such as mean absolute deviation (MAD), interquartile range (IQR), and coefficient of variation (CV) are extracted in the feature extraction process. A unique method called hybrid horse-based zebra optimization (HHZO) is used to select features. It combines the zebra optimization algorithm (ZOA) and the horse herd optimization algorithm (HHO). Weighted ensemble energy quality residual attention network (WEARN-PQ) architecture is proposed for deep learning-based detection, which integrates extended recurrent neural networks (Stack-RNN) and stack-gated recurrent units (GRU) with attention layers and convolutional neural networks (CNN) with residual connections and attention mechanisms. To ensure reliability, split-sampling K-Fold cross-validation is used during training and validation.Abstract
How to Cite
Downloads
Similar Articles
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Z. Admasu, E. Bayou, Current population size and risk status of the indigenous endangered Sheko cattle breed in south-west Ethiopia , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Kanwar D Singh, Rashmi Ashtt, Barriers to last mile connectivity: The role of crime in metro station accessibility , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Kumar Sanu, Equabal Jawaid, POND EUTROPHICATION AND FOOD TYPE AS DETERMINANT OF GROWTH AND SURVIVAL IN Clarias batrachus (LINN.) , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Akhtar Parwez, Jamaluddin Ahmad, Heavy Metal Pollution in Chapra (Bihar) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Assessment of transfer learning models for grading of diabetic retinopathy , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Leyla A.A Abu-Hussein, The role of food program to overcome obesity, overweight, and underweight among autistic children , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Farheen Najma B, Faseeha Begum, Resistance to digital banking by senior citizens in India - A review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sheena Edavalath, Manikandasaran S. Sundaram, Cost-based resource allocation method for efficient allocation of resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Priya Nandhagopal, Jayasimman Lawrence, ETTG: Enhanced token and tag generation for authenticating users and deduplicating data stored in public cloud storage , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 26 27 28 29 30 31 32 33 34 35 > >>
You may also start an advanced similarity search for this article.