Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ)
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.16Keywords:
Smart grid sensors, Hybrid Horse based Zebra optimization, Weighted ensemble based attention-residual network, Power quality, Stacked gated recurrent units, K-Fold cross-validation.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The aim of the proposed method is to solve the difficulties associated with anomaly detection and real-time data processing in complex network systems. The process begins by collecting data from internet of things (IoT) devices and smart grid sensors. Advanced interpolation techniques are used in pre-processing methods to deal with missing data, while the Isolation Forest algorithm is used to find outliers. Ensures data normalization through robust scaling, reducing the impact of outliers. Higher-order statistics such as skewness, kurtosis, and entropy measures, as well as various statistical metrics such as mean absolute deviation (MAD), interquartile range (IQR), and coefficient of variation (CV) are extracted in the feature extraction process. A unique method called hybrid horse-based zebra optimization (HHZO) is used to select features. It combines the zebra optimization algorithm (ZOA) and the horse herd optimization algorithm (HHO). Weighted ensemble energy quality residual attention network (WEARN-PQ) architecture is proposed for deep learning-based detection, which integrates extended recurrent neural networks (Stack-RNN) and stack-gated recurrent units (GRU) with attention layers and convolutional neural networks (CNN) with residual connections and attention mechanisms. To ensure reliability, split-sampling K-Fold cross-validation is used during training and validation.Abstract
How to Cite
Downloads
Similar Articles
- A. Jabeen, A. R. M. Shanavas, Hazard regressive multipoint elitist spiral search optimization for resource efficient task scheduling in cloud computing , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Priydarshi Shireesh, Tiwari Atul Kumar, Singh Prashant, Rai Kumud, Mishra Dev Brat, Comparative Water Quality Analysis in Beso River in District Jaunpur, Azamgarh and Ghazipur Uttar Pradesh , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Binay Kumar Mahto, Rakesh Patel, Rajendra Bapna, Ajay Kumar Shukla, Development and Standardization of a Poly Herbal Formulation , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Milindkumar N. Dandale, Amar P. Yadav, P. S. K. Reddy, Seema G. Kadu, Madhusudana T, Manthan S. Manavadaria, Deep learning enhanced drug discovery for novel biomaterials in regenerative medicine utilizing graph neural network approach for predicting cellular responses , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Nilay Shukla, Ketan Desai, Study on the right to education with special references to public private partnerships , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Selva Kumar D, Revisiting the challenges of disinvestment practices and central public sector enterprises (CPSEs): Indian empirical evidence , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Nisha Patil, Archana Bhise, Rajesh K. Tiwari, Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Vandana, Ambrish Pandey, Comparative analysis of print contrast of hybrid modulated digitally modulated screening on different grades of paper , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- A. Sathya, M. S. Mythili, MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Vaibhav, Raj K Tiwari, Low power three-stage OTA using reverse nested frequency compensation without nulling resistor , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 10 11 12 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.