Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.27Keywords:
Sentiment analysis, Deep learning, Code-mixing, Autoencoder, Imbalance classification.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study introduces a pioneering approach for enhancing classification accuracy on code-mixed and imbalanced data by integrating an adaptive deep autoencoder with dynamic sampling techniques. Targeting the intricate challenges of sentiment analysis within such datasets, this methodology employs an enhanced XGBoost classifier, optimized to leverage the nuanced features extracted by the autoencoder. The experimental evaluation across diverse datasets, predominantly involving Tamil-English code-mixed texts, demonstrates a notable improvement in performance metrics: accuracy reached 84.2%, precision was recorded at 74.8%, recall stood at 78.4%, and the F1-Score achieved 76.6%. This marks an enhancement over existing methods by 0.5% to 1.5%, substantiating the model's robust capability in effectively handling linguistic diversity and class imbalances. The novelty of this research lies in the seamless integration of dynamic sampling within the autoencoder's training loop, significantly boosting the adaptability and effectiveness of the machine-learning model in real-world applications.Abstract
How to Cite
Downloads
Similar Articles
- Roopshree Banchode, Sai Pranathi Bhallamudi, S. P. Kanchana, Evaluation of the Quality of Commonly Used Edible Oils and The Effects of Frying , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- MRINAL CHANDRA, “SPECTRAL STUDIES & ANTIMICROBIAL STUDIES ON Cu(II) WITH SCHIFF BASE CONTAINING SNS DONOR LIGANDS , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Rohit Chettri, Prem Kumar N, Renoprotective effect of flavonoids in type-2 diabetes mediated-nephropathy in Wistar rats , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Theophilus Deenadayal, Tarun Jain, Floristic composition in Paramananda Devara Gudda A sacred grove at Lingadahalli Village Devadurga Taluk Raichur District Karnataka, India , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Naghma Khatoon, Equabal Jawaid, ECOLOGY AND PARTIAL RESTORATION OF MONE WETLAND FOR FISH PRODUCTIVITY , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Dimpal Kumari, SOME PLANT EXTRACTS AGAINST ANTHRACNOSE INFECTION IN PAPAYA (Carica papaya) , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- UMASHANKAR SHUKLA, ANIL K. UPADHYAY, MATHEMATICAL MODEL FOR INFECTION AND REMOVAL IN POPULATION , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Shane Desai, Bhaskar K. Pandya, Analyzing the Novels of T. S. Pillai and Perumal Murugan from Indian socio-political perspective , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Ruchira P Dudhrejiya, A critical analysis of power dynamics in Vijay Tendulkar's theatrical tapestry , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- MRINAL CHANDRA, DEVELOPMENT OF METHOD FOREXTRACTIVE SPECTROPHOTOMETRIC DETERMINATION OF COPPER(II) WITH N-BENZOYL THIOUREATHIOSEMICARBONZONE(MAAPHE) AS AN ANALYTICAL REAGENT , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
<< < 19 20 21 22 23 24 25 26 27 28 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Ayesha Shakith, L. Arockiam, EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper