Role of artificial intelligence in evaluating autism spectrum disorder
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.59Keywords:
Artificial intelligence, Autism spectrum disorder.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Autism spectrum disorder (ASD) is a neurological illness characterized by challenges with repetitive tasks, social interaction, and communication. Even if genetics is the primary cause, early detection is vital, and using ML presents a promising way to diagnose the condition more quickly and affordably. In an effort to improve and automate the diagnostic process, this research uses a variety of machine-learning techniques to pinpoint important ASD features. With the rapid growth of artificial intelligence techniques, it has become possible to use intelligent methods to carry out early large-scale senseless screening and diagnosis of autism. In the future, research should focus on building an intelligent medical screening and diagnosis system for autism patients, developing screening tools and constructing an intelligent identification model for patients that integrates multimode data.Abstract
How to Cite
Downloads
Similar Articles
- Partha Majumdar, Empowering skill development through generative AI bridging gaps for a sustainable future , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- C. Mohan Raj, M. Sundaram , M. Anand, Automation of industrial machinerie , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Milindkumar N. Dandale, Amar P. Yadav, P. S. K. Reddy, Seema G. Kadu, Madhusudana T, Manthan S. Manavadaria, Deep learning enhanced drug discovery for novel biomaterials in regenerative medicine utilizing graph neural network approach for predicting cellular responses , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Prakash Lakhani, Premasish Roy, Souren Koner, Deepa Nair, D. Patil, Mona Sinha, Exploring the influence of work-life balance on employee engagement in Mumbai’s real estate industry , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Archana Dhamotharan, Kanthalakshmi Srinivasan, Analog Circuits Based Fault Diagnosis using ANN and SVM , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Radha K. Jana, Dharmpal Singh, Saikat Maity, Modified firefly algorithm and different approaches for sentiment analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Roopesh K R, Jyothi Y, Manisha Bihani, Chandini C H, Nishanth D R, Maheshkumar Hondale, Sairashmi Samanta, Karthik G, Anu M, Neuroprotective effect of alcoholic extract of Selaginella bryopteris leaves in experimental models of epilepsy , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- N Harini, N Santhi, Challenges and opportunities in product development using natural dyes , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Archana Verma, Application of metaverse technologies and artificial intelligence in smart cities , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper

