A resilience framework for fault-tolerance in cloud-based microservice applications
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.23Keywords:
Bulkhead, little law, Fault tolerance, Auto Retry Circuit Breaker (ARCB), Resilience, framework, microservicesDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cloud-distributed systems offer significant opportunities for fault-tolerant applications. Microservices have gained significant acceptance as a cloud-based architecture for building fault-tolerant cloud applications. The primary aim of this study is to develop a dependable resilience framework, incorporating appropriate design patterns, that can be applied to any cloud applications. This framework combines a bulkhead utilizing a little law approach and an auto-retry circuit breaker, which can be seen as a fault tolerance pattern. This will eliminate the need for manual setting of design patterns, resulting in maximum throughput, availability of resources and the performance can be increased up to 55.3% from the average execution duration.Abstract
How to Cite
Downloads
Similar Articles
- M. Merla Agnes Mary, S. Britto Ramesh Kumar, DAJO: A Robust Machine Learning–Based Framework for Preprocessing and Denoising Fetal ECG Signals , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Deepa Ramachandran VR VR, Kamalraj N, Hybrid deep segmentation architecture using dual attention U-Net and Mask-RCNN for accurate detection of pests, diseases, and weeds in crops , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Sadhana Gaikwad, Rajvardhan, Overview on biased news reporting of Indian television with legal aspect , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Merla Agnes Mary, Britto Ramesh Kumar, Hybrid GAN with KNN - SMOTE Approach for Class-Imbalance in Non-Invasive Fetal ECG Monitoring , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- D. Padma Prabha, C. Victoria Priscilla, A combined framework based on LSTM autoencoder and XGBoost with adaptive threshold classification for credit card fraud detection , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Hemang Shah, Archana Gadekar, Artificial intelligence and intellectual property rights with special reference to patent and copyright , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Sujay Bhalchandra, Nilesh D. Shinde, An exploratory study of factors influencing manufacturer-dealer relationship in Indian automobile industry , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Saloni M. Thacker, S. Z. Zubair Ahmed, Anaurene Roy, Influence of loneliness on self-esteem and mental wellbeing in non-domicle postgraduate students in Bangalore , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- J. Helan Shali Margret, N. Amsaveni, Application of Lotka’s law in Indian cytokine publications: A scientometric study based on web of science during 1998 TO 2022 , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

