Analysis of substrate materials for flexible and wearable MIMO antenna for wireless communication
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.15Keywords:
Flexible antenna, Flame Retardant4, LCP-Liquid crystal polymer, Multiple input multiple output, PVC-Polyvinyl chloride, Resonant frequency.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In recent years, flexible and portable antenna technologies have become critical to the development of next-generation wireless communication technologies such as 5G and beyond. The purpose of this study is to evaluate the performance of three basic materials used in the design of flexible and portable antennas - FR4, PVC and LCP. The methodology involves studying the resonant frequency ranges, return losses, bandwidth, gain and antenna radiation efficiency of each material. The results show that LCP has the widest bandwidth and highest efficiency, making it suitable for high frequency applications. Substrate PVC, while limiting significant bandwidth, limits high frequency accuracy due to its higher dielectric constant. Although FR4 is cost-effective, its effectiveness is limited in high-frequency applications due to its narrower bandwidth and higher loss coefficient. These results indicate that LCP is an optimal choice for advanced RF applications, especially in next-generation wireless communication technologies. Future research should focus on improving the properties of these materials to further improve their suitability for flexible and portable antennas.Abstract
How to Cite
Downloads
Similar Articles
- Amol Garge, Monika Tripathi, Navigating the virtual frontier: Best practices for ERP implementation in the digital age , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Amita Pal, Richa Trivedi, Amit Jain, Sudhir Jain, Diurnal and seasonal variation of GPS-TEC during a low solar activity period at EIA region (Bhopal) , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- P. John Robinson, P. Susai Alexander, Neural net influenced magdm problem with modified choquet integral aggregation operators and correlation coefficient for triangular fuzzy intuitionistic fuzzy sets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Vaibhav, Raj K Tiwari, Low power three-stage OTA using reverse nested frequency compensation without nulling resistor , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Aarthi Monalisa M, Anli Suresh, Adoptive bancassurance models transforming patronization among the insured , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- G. Vijayalakshmi, M. V. Srinath, Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- K. Arunkumar, K. R. Shanthy, S. Lakshmisridevi, K. Thilagam, FR-CNN: The optimal method for slicing fifth-generation networks through the application of deep learning , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- S. Deepa, I.S. Arafat, M. Sathya Priya, S. Saravanan, An improved spectrum sharing strategy evaluation over wireless network framework to perform error free communications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- G. C. Sowparnika, D. A. Vijula, Modeling and control of boiler in thermal power plant using model reference adaptive control , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Optimization based energy aware scheduling in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

