Enhanced LSTM for heart disease prediction in IoT-enabled smart healthcare systems
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.37Keywords:
Internet of Things, Healthcare System, Deep Learning, Prediction of Heart Disease, Red Deer OptimizationDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cardiac patients require prompt and effective treatment to prevent heart attacks through accurate prediction of heart disease. The prognosis of heart disease is complex and requires advanced knowledge and expertise. Healthcare systems are increasingly integrated with the internet of things (IoT) to collect data from sensors for diagnosing and predicting diseases. Current methods employ machine learning (ML) for these tasks, but they often fall short in creating an intelligent framework due to difficulties in handling high-dimensional data. A groundbreaking health system leverages IoT and an optimized long short-term memory (LSTM) algorithm, enhanced by the red deer (RD) algorithm, to accurately diagnose cardiac issues. Continuous monitoring of blood pressure and electrocardiograms (ECG) is conducted through heart monitor devices and smartwatches linked to patients. The gathered data is combined using a feature fusion approach, integrating electronic medical records (EMR) and sensor data for the extraction process. The RD-LSTM model classifies cardiac conditions as either normal or abnormal, and its performance is benchmarked against other deep-learning (DL) models. The RD-LSTM model showed better improvement in prediction accuracy over previous models.Abstract
How to Cite
Downloads
Similar Articles
- G GAYATHRI DEVI, Dr R Radha, Dark web exploitation of women and children: Understanding the phenomenon and combating its impact , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Chaitanya A. Kulkarni, Sayali Wadhokar, Om C. Wadhokar, Medhavi Joshi, Tushar Palekar, The intersection of cervical cancer treatment and physiotherapy: Current insights and future directions , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Nagarani, Amalraj P., Lakshay Phor, Nishank S. Pimple, Banashree Sen, Ramaprasad Maiti, Vikas S. Jadhav, Innovative technological advancements in solving real quadratic equations: Pioneering the frontier of mathematical innovation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Archana Verma, Application of metaverse technologies and artificial intelligence in smart cities , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Archana Verma, Role of artificial intelligence in evaluating autism spectrum disorder , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Nitika, Kuldeep Chaudhary, A critical review of social media advertising literature: Visualization and bibliometric approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Nilay Shukla, Ketan Desai, Study on the right to education with special references to public private partnerships , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R. Chandran, J. Selvam, Evaluating the impact of MOOC participation on skill development in autonomous engineering colleges , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Enhanced malicious node identification in WSNs with directed acyclic graphs and RC4-based encryption , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Rukmani, C. Jayanthi, Trust and security in wireless sensor networks: A literature review of approaches for malicious node detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 37 38 39 40 41 42 43 44 45 46 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Priya Nandhagopal, Jayasimman Lawrence, ECE cipher: Enhanced convergent encryption for securing and deduplicating public cloud data , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Priscilla I, Jayasimman Lawrence, Enhanced Symmetric Cryptography Technique (ESCTGPU) for Secure Communication between the IoT Gateway and the public Cloud Environment , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper

