Enhanced LSTM for heart disease prediction in IoT-enabled smart healthcare systems
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.37Keywords:
Internet of Things, Healthcare System, Deep Learning, Prediction of Heart Disease, Red Deer OptimizationDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cardiac patients require prompt and effective treatment to prevent heart attacks through accurate prediction of heart disease. The prognosis of heart disease is complex and requires advanced knowledge and expertise. Healthcare systems are increasingly integrated with the internet of things (IoT) to collect data from sensors for diagnosing and predicting diseases. Current methods employ machine learning (ML) for these tasks, but they often fall short in creating an intelligent framework due to difficulties in handling high-dimensional data. A groundbreaking health system leverages IoT and an optimized long short-term memory (LSTM) algorithm, enhanced by the red deer (RD) algorithm, to accurately diagnose cardiac issues. Continuous monitoring of blood pressure and electrocardiograms (ECG) is conducted through heart monitor devices and smartwatches linked to patients. The gathered data is combined using a feature fusion approach, integrating electronic medical records (EMR) and sensor data for the extraction process. The RD-LSTM model classifies cardiac conditions as either normal or abnormal, and its performance is benchmarked against other deep-learning (DL) models. The RD-LSTM model showed better improvement in prediction accuracy over previous models.Abstract
How to Cite
Downloads
Similar Articles
- Aditi Sharma, Naveen Gaurav, Arun Kumar, Adhatoda vasica: A Critical Review and Assessment of Its Future in Herbal Medicine , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Anjali Thapa, Yunus Ali, Sanjay Madan, Pragya Verma, Prajwal Verma, Naveen Gaurav, An Assessment of in vitro Propagation and Medicinal Properties of Datura stramonium (Dhatura) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Nitu Y. Wadkar, Sneha A. Irole, Sayali S. Kondar, Kalyani Joshi, The idea of mahavisha-upvisha shodhan in agadtantra: The ancient Indian knowledge system , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Maria D. Roopa, Nimitha John, Bayesian Optimization Phase I Design of Experiment Models , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sheena Edavalath, Manikandasaran S. Sundaram, MARCR: Method of allocating resources based on cost of the resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rahul ., Naveen Sharma, Effect of Suspended Particles on a Couple-Stress Rivlin-Ericksen Ferromagnetic Fluid Heated from Below in a Porous Medium, with Varying Gravity and Magnetic Field. , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
You may also start an advanced similarity search for this article.