Enhanced LSTM for heart disease prediction in IoT-enabled smart healthcare systems
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.37Keywords:
Internet of Things, Healthcare System, Deep Learning, Prediction of Heart Disease, Red Deer OptimizationDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cardiac patients require prompt and effective treatment to prevent heart attacks through accurate prediction of heart disease. The prognosis of heart disease is complex and requires advanced knowledge and expertise. Healthcare systems are increasingly integrated with the internet of things (IoT) to collect data from sensors for diagnosing and predicting diseases. Current methods employ machine learning (ML) for these tasks, but they often fall short in creating an intelligent framework due to difficulties in handling high-dimensional data. A groundbreaking health system leverages IoT and an optimized long short-term memory (LSTM) algorithm, enhanced by the red deer (RD) algorithm, to accurately diagnose cardiac issues. Continuous monitoring of blood pressure and electrocardiograms (ECG) is conducted through heart monitor devices and smartwatches linked to patients. The gathered data is combined using a feature fusion approach, integrating electronic medical records (EMR) and sensor data for the extraction process. The RD-LSTM model classifies cardiac conditions as either normal or abnormal, and its performance is benchmarked against other deep-learning (DL) models. The RD-LSTM model showed better improvement in prediction accuracy over previous models.Abstract
How to Cite
Downloads
Similar Articles
- Deepa H. Dwivedi, Rubee Lata, R. B. Ram, EFFECT OF BIO-FERTILIZER AND ORGANIC MANURES ON YIELD AND QUALITY OF GUAVA CV. RED FLESHED , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V. Baby Deepa, R. Jeya, Dynamic resource allocation with otpimization techniques for qos in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Pavithra M, Dr. R. Neelaveni, Muthuraman K. R , Kamalesh G, Design of an interactive smart band for intellectually disabled person , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Amanda Quist Okronipa, Isaac Asampana, Jones Yeboah Nyame, Exploring e-learning system loyalty: The role of system quality and satisfaction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Narmetova Y. Karimovna, Abdusamatov Khasanboy, Abdinazarova Iltifotkhon, Nurbaeva Khabiba, Mirzayeva Adiba, Psychoemotional characteristics in psychosomatic diseases , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, Inclusive education for children with learning difficulties in Mauritius: An analytical study among select stakeholders , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Mohit Kalra, Arpan Nautiyal, Krishnapal Singh, Health Assessment of Buksa Tribe: Exploring CSR Models for Indigenous Community Empowerment in Ramnagar Block, Nainital District , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Gomathi P, Deena Rose D, Sampath Kumar R, Sathya Priya M, Dinesh S, Ramarao M, Computer vision for unmanned aerial vehicles in agriculture: applications, challenges, and opportunities , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- M. Ragul, A. Aloysius, V. Arul Kumar, Enhancing IoT blockchain scalability through the eepos consensus algorithm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
<< < 15 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Priya Nandhagopal, Jayasimman Lawrence, ECE cipher: Enhanced convergent encryption for securing and deduplicating public cloud data , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Priscilla I, Jayasimman Lawrence, Enhanced Symmetric Cryptography Technique (ESCTGPU) for Secure Communication between the IoT Gateway and the public Cloud Environment , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper

