A novel method for developing explainable machine learning framework using feature neutralization technique
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.35Keywords:
artificial intelligence, Machie Learning, Explainable AI, Feature Neutralization, XAI, LIME, SHAPDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The rapid advancement of artificial intelligence (AI) has led to its widespread adoption across various domains. One of the most important challenges faced by AI adoption is to justify the outcome of the AI model. In response, explainable AI (XAI) has emerged as a critical area of research, aiming to enhance transparency and interpretability in AI systems. However, existing XAI methods facing several challenges, such as complexity, difficulty in interpretation, limited applicability, and lack of transparency. In this paper, we discuss current challenges using SHAP and LIME metrics being popular methods for explainable AI and then present a novel approach for developing an explainable AI framework that addresses these limitations. This novel approach uses simple techniques and understandable human explanations to provide users with clear and interpretable insights into AI model behavior. Key components of this approach include model-agnostic interpretability, a newly developed explainable factor overcoming the challenges of current XAI methods and enabling users to understand the decision-making process of AI models. We demonstrate the effectiveness of the new approach through a case study and evaluate the framework’s performance in terms of interpretability. Overall, the new approach offers enhanced transparency and trustworthiness in AI systems across diverse applications.Abstract
How to Cite
Downloads
Similar Articles
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Richa Sharma, Shrutimita Mehta, Resilience in Resisting Spaces: Cross-Cultural Gender Identity in “Before We Visit the Goddess” , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Panda Aditi Ambarish, Kaushik Trivedi, Immersive learning: A virtual reality teaching model for enhancing english speaking skills , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- C. Muruganandam, V. Maniraj, A Self-driven dual reinforcement model with meta heuristic framework to conquer the iot based clustering to enhance agriculture production , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- S ChandraPrabha, S. Kantha Lakshmi, P. Sivaraaj, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- R Prabhu, S Sathya, P Umaeswari, K Saranya, Lung cancer disease identification using hybrid models , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Thiagarajan, S. Prakash Kumar, Performance of public transport appraisal using machine learning , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Krishna P. Kalyanathaya, Krishna Prasad K, A framework for generating explanations of machine learning models in Fintech industry , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper