
Abstract
The rapid advancement of artificial intelligence (AI) has led to its widespread adoption across various domains. One of the most important 
challenges faced by AI adoption is to justify the outcome of the AI model. In response, explainable AI (XAI) has emerged as a critical 
area of research, aiming to enhance transparency and interpretability in AI systems. However, existing XAI methods facing several 
challenges, such as complexity, difficulty in interpretation, limited applicability, and lack of transparency. In this paper, we discuss current 
challenges using SHAP and LIME metrics being popular methods for explainable AI and then present a novel approach for developing 
an explainable AI framework that addresses these limitations. This novel approach uses simple techniques and understandable human 
explanations to provide users with clear and interpretable insights into AI model behavior. Key components of this approach include 
model-agnostic interpretability, a newly developed explainable factor overcoming the challenges of current XAI methods and enabling 
users to understand the decision-making process of AI models. We demonstrate the effectiveness of the new approach through a case 
study and evaluate the framework’s performance in terms of interpretability. Overall, the new approach offers enhanced transparency 
and trustworthiness in AI systems across diverse applications.
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Introduction
Recently, ar tif icial intelligence (AI) systems have 
demonstrated remarkable capabilities across various 
domains such as e-commerce, healthcare, finance and many 
others. There is an increasing demand for safe, secure and 
trustworthy use of AI systems in the business domains. 
Explainable artificial intelligence (XAI) is a powerful tool 
to make AI applications safe, secure and trustworthy 
use of AI to demystify the complex inner workings of AI 
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models and make their outputs more accessible to human 
understanding.

This paper explores the motivation behind the 
development of a new framework, the challenges 
encountered, and the potential impact on user engagement 
with AI systems. In the subsequent sections, we delve into 
the design principles that guide the development of novel 
methods, the integration of XAI techniques to ensure 
interpretability, and practical considerations for real-world 
applications. Through this work, we aim to contribute to the 
ongoing discourse on XAI, providing a tangible solution that 
bridges the gap between the complexity of AI models and 
the need for transparent, user-friendly interactions (Arrieta, 
A. et al., 2020).

XAI has emerged as a critical component in the 
development and deployment of artificial intelligence 
systems. As AI models grow in complexity, there is an 
increasing demand for transparency and interpretability 
to bridge the gap between the model’s decisions and 
human understanding. XAI frameworks need to be 
designed with the end-user in mind. The challenge 
lies in presenting complex technical explanations in a 
comprehensible manner. The design should consider the 
diverse backgrounds and expertise of users, ensuring that 
the explanations cater to both technical and non-technical 
audiences. XAI frameworks typically consist of several 
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components such as a model interpreter, explanations 
generator, query engine and visualizations designed to 
enhance the interpretability and transparency of machine 
learning models (Kalyanathaya and Krishna Prasad, 2022).

In our previous work (Kalyanathaya and Krishna Prasad, 
2022), we built a concept diagram of XAI framework that 
includes a query engine, model interpreter and model 
predictor to explain the model outcomes. This will explain 
the logical relationship between the observations (new data) 
and outcomes. The objective is to explain the outcome of the 
ML model in user user-friendly interface to business users.

An Overview of SHAP and LIME

Shapley additive explanations
Shapley additive explanations (SHAP) is a method used for 
explaining individual predictions from machine learning 
models. It is based on Shapley values from cooperative 
game theory, providing a theoretically grounded approach 
to understanding the impact of each feature on the model’s 
output. SHAP values assign a contribution to each feature, 
indicating how much it influences the prediction compared 
to a baseline. This method offers global insights into 
feature importance and local explanations for individual 
predictions, enabling users to interpret complex models 
more effectively and build trust in their decisions (Lundberg, 
S. M., and Lee, S. I., 2017).

Local interpretable model-agnostic explanations
Local interpretable model-agnostic explanations (LIME) 
is another popular technique for explaining individual 
predictions, particularly for black-box models. It generates 
local approximations of the model’s behavior around 
a specific prediction by perturbing the input data and 
observing changes in the output. LIME builds interpretable 
surrogate models, such as linear models or decision trees, 
to approximate the complex model locally. These surrogate 
models provide insights into how different features 
contribute to the prediction for a given instance, enhancing 
interpretability and transparency. LIME is widely used for 
its simplicity and flexibility in explaining a wide range of 
models (Molnar, C. 2022).

Following are the summaries of the study of the most 
recent literature:

• Oblizanov, A. et al., 2023
This research explores evaluation metrics for explainable 
AI global methods using synthetic data, shedding light 
on the challenges and advancements in assessing the 
performance of interpretable models and contributing to 
the understanding of their effectiveness and limitations. The 
authors propose the evaluation methods must be based on 
accuracy features, must have stable distribution and must be 
instance-guided. The study indicated that the accuracy of 
both SHAP and LIME methods degraded as the correlation 
coefficient between input features increased.

• Huang, X. and Marques-Silva, J., 2023
Two papers critique the adequacy and suitability of Shapley 
values for explainability, raising concerns and providing 
alternative viewpoints on their effectiveness in interpreting 
machine learning models.

• Krishna, S. et al., 2022
The paper delves into the inconsistency problem in 
explainable ML, reflecting on practitioners’ perspectives and 
highlighting the implications for model interpretability and 
trustworthiness in real-world applications.

• Fernández-Loría, C. et al., 2020
The paper proposes the counterfactual approach to 
explaining data-driven decisions made by AI systems, 
presenting a novel perspective on interpretability that aims 
to enhance transparency and accountability in algorithmic 
decision-making processes.

• Slack, D. et al., 2020
The study investigates adversarial attacks on post hoc 
explanation methods like SHAP and LIME, revealing 
vulnerabilities that could undermine the reliability and 
trustworthiness of explanations generated by these techniques.

• Janzing, D. et al., (2020)
Addressing the causal problem, Janzing et al. discuss 
challenges in quantifying feature relevance for explainable 
AI, highlighting potential limitations in the interpretation of 
SHAP values and other methods.

• van der Horst, J. et al., 2020
The critical review examines SHAP values, offering insights 
into their strengths and weaknesses and suggesting areas 
for further research and improvement in understanding 
their role in model interpretability.

Each summary encapsulates the key points and 
contributions of the respective literature while maintaining 
uniqueness and brevity.

While SHAP has been primarily applied to tabular data, its 
applicability to other data types, such as text, images, or time-
series data, may be limited. Adapting SHAP to handle these 
data types effectively remains an area of ongoing research 
and development. Despite these drawbacks, SHAP remains 
a valuable tool for providing model-agnostic explanations in 
XAI. Addressing these limitations and developing techniques 
to improve the scalability, interpretability, and robustness of 
SHAP will be crucial for advancing the field of explainable 
AI (Agarwal, N. and Das, S. 2020).

Our study summarizes the following challenges that 
exists in the current approaches used by methods and tools 
for interpretability and explainability. While SHAP (SHapley 
Additive exPlanations) metrics are widely used in XAI to 
provide insights into the contribution of individual features 
to model predictions, they also have certain drawbacks. 
Some of the drawbacks of SHAP metrics include:
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Computational Complexity
SHAP computations can be computationally expensive, 
especially for complex models and large datasets. As SHAP 
values require evaluating model predictions for every 
possible combination of features, the computational burden 
increases exponentially with the number of features and 
instances. This can limit the scalability of SHAP, particularly 
in real-time or resource-constrained applications.

Interpretability Challenges
While SHAP values provide explanations for individual 
predictions, interpreting these values can be challenging, 
especially for non-technical users. Understanding the impact 
of multiple features on a prediction and the interactions 
between them may require domain expertise and may not 
always be intuitive.

Dependence on Model Complexity
SHAP values may not always provide meaningful explanations 
for highly complex models, such as deep neural networks. 
In such cases, interpreting SHAP values may be less 
straightforward, and the explanations may not fully capture 
the underlying decision-making process of the model.

High-Dimensional Data
SHAP may face limitations when dealing with high-dimensional 
data, where the number of features is large relative to the 
number of instances. In such scenarios, interpreting SHAP 
values and identifying meaningful patterns or insights from 
the explanations may become more challenging.

Model Sensitivity
SHAP values can be sensitive to the choice of model 
architecture, training data, and hyperparameters. Variations 
in these factors can lead to different SHAP values, impacting 
the consistency and reliability of the explanations provided 
by SHAP.

Assumption of Feature Independence
SHAP values assume feature independence, meaning that 
the contribution of each feature to the model’s prediction is 
considered in isolation. In reality, features may be correlated 
or interact with each other, leading to potentially misleading 
or incomplete explanations from SHAP.

Potential for Misinterpretation
There is a risk of misinterpretation or misrepresentation of 
SHAP values, particularly when communicating explanations 
to end-users. Without proper context or guidance, users 
may draw incorrect conclusions or make decisions based on 
incomplete or misleading information derived from SHAP 
explanations.

Limited Support for Non-Tabular Data
While SHAP has been primarily applied to tabular data, its 
applicability to other data types, such as text, images, or 

time-series data, may be limited. Adapting SHAP to handle 
these data types effectively remains an area of ongoing 
research and development.

Materials and Methods
Based on the literature review, we summarize the challenges 
of using SHAP and LIME metrics:

Inadequacy and Refutation
Some researchers argue about the inadequacy and 
refutation of Shapley values for explainability, highlighting 
potential limitations or drawbacks in its application. (Huang 
and Marques-Silva 2023) presented papers critiquing the 
suitability of Shapley values for explainability.

Assumptions of Feature Independence
The existing methods in explainable machine learning are 
based several assumptions, which can impact the reliability 
and consistency of SHAP metrics (Krishna et al., 2022).

Adversarial Attacks
SHAP, along with LIME, is susceptible to adversarial 
attacks, which can undermine the trustworthiness of the 
explanations generated by these methods (Slack et al., 2020).

Feature Relevance Quantification
(Janzing et al., 2020) point out that quantifying feature 
relevance in explainable AI poses a causal problem, 
suggesting potential challenges or limitations in accurately 
interpreting and utilizing SHAP values for this purpose.

Critical Review
There are critical reviews of SHAP values in the literature, 
indicating that despite their popularity, there may be aspects 
of SHAP metrics that require further scrutiny or refinement 
(van der Horst et al., 2020).

These challenges collectively underscore the need for 
careful consideration and ongoing research to address 
limitations and enhance the effectiveness of SHAP metrics in 
explaining machine learning models. SHAP is model agnostic 
only in theory but requires separate implementation for 
each algorithm. For example, SHAP implementation built 
for XGBoost will not work for the random forest algorithm. 
SHAP implementation built for neural networks will not 
work for non-neural network-based models. SHAP replaces 
the features with random values to compute the deviations 
from the mean predictions. So there is an unknown effect of 
the random values impacting the contributions in features 
(both prediction and correlation).

Experiments on the New Approach
We propose a new method to replace a feature and compute 
the deviations of prediction to the original prediction. We 
can try this approach in the following two ways:
• Physically remove the feature in the dataset and retrain 

the model



2228 Kalyanathaya and Prasad The Scientific Temper. Vol. 15, No. 2

• Neutralize the feature by setting a uniform value in the 
dataset and run the prediction (without retraining the 
model)

The first method seems to be complex and has technical 
implications, as retraining the model may alter prediction 
patterns (model parameters) from the original. The second 
method seems to be simpler and we can compare the two 
performances of the same model with the observed value 
and constant value of the features. This means model 
parameters are not altered as we are not retraining the 
model.

We start with the following proposition of defining an 
ML prediction problem having n features and the goal of 
producing classes of outputs (typical classification problem). 
It can be stated as follows:

P0 = F(x1,x2,x3,x4,……. Xn)
Where x1, x2, x3, x4 …. are the features P0 is the 

probability value of the predicted class
F is a prediction function using ML algorithm with the 

features.
The Figure 1 shows formulation of solution which can 

be described as follows:
Step 1: Choose features one at time from a list of features 

x1, x2,x3,x4
Step 2: Identify a method to neutralize the effect of the 

chosen feature in the prediction model as follows:
P1 = F(x1, 0,x3,x4,x5…..xn)
Where P1 is the probability score of the predicted class.
Here, feature x2 is neutralized with a value (typically a 

constant value) that will produce a uniform effect of the 
feature for all the observations. Hence, the neutralization 
makes the features dummy in the prediction. The objective 
of neutralization is to measure the deviations in the 
prediction with a constant value of the feature to the 
prediction with the observed value of the feature. 

Step 3: Identify a measure that quantifies the influence 
of the features on the outcome. We can define the measure 
as the deviation of the relative change in the outcome 
to the original outcome. It can be calculated as follows: 
P0 – P1, where P0 is the probability score of the original 
predicted class with observed feature value, P1 is the revised 
probability score of the predicted class with a constant 
feature value.

We will repeat the calculation for the sample of validation 
data on the same model F. The deviations of the probability 
scores are recorded in the dataset for each feature. The 
deviation can be plotted, showing maximum variations 
(or swings) in the probability scores due to neutralized 
features. The longer the swing, the higher is the impact 
of the feature.

We can formalize the approach as follows:
Feature neutralization impact score is defined as the 

interquartile range (IQR) value of measures of deviations of 
revised prediction probability score (with a neutral value 
of the feature) to the original probability score (with an 
observed value of the feature).

The high-level algorithm for the calculation of the feature 
neutralization impact ratio (FNI ratio) for a classification type 
of ML model as follows:

Algorithm 
Feature neutralization impact (F as ML model, X as Sample 
data):

Let F be the prediction function (typically called as ML 
model) trained using historical data

Let X be the set of validation data collected from sample 
real-time data for testing purposes.

Let D be the variable to store the measure of deviation.
Let P0 = probability score of the prediction with original 

sample data Let FNI is the collection of FNI(f) for all the 
features in X

For each feature f in the feature set of sample validation 
data X: For the sample validation data X

Let f1 = neutralization feature with an assigned constant 
value in the revised sample data

Let X1 be the revised copy of X with neutralization of the
feature f1
Let P1 = the probability score of the prediction with
revised sample data X1
Let D(f) = P0 – P1 Let FNI(f) = IQR(D(f))
Let FNI = Collection of FNI(f) Return FNI
The collection of FNI(f) values can be plotted using 

a boxplot and we can observe the range of D(f) for each 
feature.

Results and Discussions
We take a credit approval problem with a set of features to 
predict whether a credit can be approved or rejected based 
on the features evaluated by the ML model. We set up an 
experiment using a credit dataset and evaluated the results 
using test samples. We will use the probability score instead 
of the accuracy score for the algorithm. This is because we 
have observed probability score provides more insight of 
the variations of the impact of feature neutralization instead 
of the averaged accuracy score of validation data. We have 
used credit data to train a model by using a scikit-learn 
package of random forest algorithm.Figure 1: A symbolic formulation of the prediction
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Here, credit_asmt_model_base is the trained model using 
credit data. X_test_base is the sample validation data. The 
probability score for each credit record in X_test_base is 
calculated using the pred_proba() method of the random 
forest classifier object in the scikit-learn package (Pedregosa, 
F. et al., 2011). So, we get the class probabilities for each 
prediction outcome.

The code snippet for getting class probability values are 
as follows: pred_proba_original=credit_asmt_model_base.
predict_proba(X_test_base) Next, we create a copy of the 
validation data and replace each feature with neutralizing 
values one by one. The calculated class probabilities for each 
feature neutralization step as follows:

for idx, feature in enumerate(cols_list):
New_X = X_test_base.copy()
New_X[feature] = 0
pred_proba_revised= credit_asmt_model_base.

predict_proba(New_X) FNI_df[feature] = pred_proba_
original[1] - pred_proba_revised[1]

The FNI_df contains the deviations in class probabilities 
for each neutralized feature. The collection of FNI(f) values 
can be plotted using boxplot as shown in Figure 2.

Figure 2 shows the inter quartile range (IQR) that 
measures the deviation from the original probability score to 
the revised score after feature neutralization. The wide band 
(high IQR) indicates the variation (or change) is significant 
due to the feature neutralization. Hence, we can consider 
the larger the IQR, the higher will be impact of the feature 
on the outcome.

We also present here a comparison result for SHAP and 
the new method for explainable factors on a model (global 
interpretations) depicted in Figure 3 as follows (Table 1):

Figure 2: A box plot of class probabilities for the sample validation data

Figure 3: Comparison of feature importance depicted in SHAP and 
new method

Table 1: Explainable factors on the model

Explaina
ble factors

SHAP method New method (Feature 
neutralization impact)

Feature importa 
nce of the model
score

Shap values plotted 
with bar chart on 
sample set

The Feature Neutralization 
Impact score on a box plot 
on the sample set
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To verify the results of the neutralization method, we have 
generated the feature importance of random forest ML 
algorithm implementation is shown in Figure 4.

Comparing Figures 3 and 4, we can see that features 
displayed with bands have shown similar results with top 
5 features.

Further, we can use the same approach for regression 
or forecasting type of ML model by using the error values 
instead of mean square error methods like RMSE or MSE 
scores.

Conclusion
So we have studied the various challenges in using SHAP 
and LIME approaches to XAI and proposed and a new 
approach to overcome the challenges. The new approach 
has the following advantages when compared to SHAP and 
LIME methods:
• No technical knowledge is required to assess the model. 

The method uses a simple formula of relative change.
• This method does not require separate implementation 

for each machine learning algorithm.
• The same formula can be applied to any model after the 

training with data.
• Computational complexity doesn’t increase with the 

increase in number of features.
Further, we would like to propose future development 

of this approach in the following areas:
• Study the implementation of this approach with text 

and image data used in AI models.
• Develop applications of this approach for testing and 

validation of AI models.

• Propose improvement methods to increase the 
trustworthiness and responsible AI metrics to AI 
governance.
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