Predictive modeling of dropout in MOOCs using machine learning techniques
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.32Keywords:
Machine Learning, Predictive Modeling, Dropout Prediction, MOOCs, Learning AnalyticsDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The advent of massive open online courses (MOOCs) has revolutionized education, offering unprecedented access to high-quality learning materials globally. However, high dropout rates pose significant challenges to realizing the full potential of MOOCs. This study explores machine learning techniques for predicting student dropout in MOOCs, utilizing the open university learning analytics dataset (OULAD). Seven algorithms, including decision tree, random forest, Gaussian naïve Bayes, AdaBoost classifier, extra tree classifier, XGBoost classifier, and multilayer perceptron (MLP), are employed to predict student outcomes and dropout probabilities. The XGBoost classifier emerges as the top performer, achieving 87% accuracy in pass/fail prediction and 86% accuracy in dropout prediction. Additionally, the study proposes personalized interventions based on individual dropout probabilities to enhance student retention. The findings underscore the potential of machine learning in addressing dropout challenges in MOOCs and offer insights for instructors and educational institutions to proactively support at-risk students.Abstract
How to Cite
Downloads
Similar Articles
- Santosh T. Karmani, Sachin V. V. Acharekar, The impact of online degree programs on employment opportunities in contemporary India , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Nilesh M. Patil, P M. Krishna, G. Deena, C Harini, R.K. Gnanamurthy, Romala V. Srinivas, Exploring real-time patient monitoring and data analytics with IoT-based smart healthcare monitoring , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Amanda Quist Okronipa, Isaac Asampana, Jones Yeboah Nyame, Exploring e-learning system loyalty: The role of system quality and satisfaction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Amita Gupta, A study of the scientific approach inherited in the Indian knowledge system (IKS) , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Neeshma Jaiswal, Anshu Malhotra, Sandeep K. Malhotra, PREDICTATIVE HYPOTHESIS FOR PARASITE DISEASE OUTBREAKS OF ANISAKID NEMATODES , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- E. J. David Prabahar, J. Manalan, J. Franklin, A literature review on the information literacy competency among scholars of co-education colleges and women’s colleges , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Vishnu Prasad C, Ramaprabha D, Do tax compliance costs mediate the relationship between the complexity of tax structure and fairness perceptions? Evidence from manufacturers , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Archana Dhamotharan, Kanthalakshmi Srinivasan, Analog Circuits Based Fault Diagnosis using ANN and SVM , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- S. Jerinrechal, I. Antonitte Vinoline, A Deterministic Inventory Model with Automation-Enabled Processes for Defective Item Management , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- UMASHANKAR SHUKLA, ANIL K. UPADHYAY, MATHEMATICAL MODEL FOR INFECTION AND REMOVAL IN POPULATION , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
<< < 15 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.

