RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.25Keywords:
Deep learning, Convolution neural network, basal cell carcinoma, skin cancer, feature extraction, optimization algorithmDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Basal cell carcinoma (BCC) is a type of skin cancer that initiates from the epithelial cells of our skin. Compared to other forms of cancer, BCC infrequently spreads to other parts of the body. It has a risk of local attack and demolition of surrounding tissues. Typically, BCC shows as one or numerous small, glowing nodules exhibiting central depressions. These knots are commonly found on the sun-exposed skin areas of older adults. Many dermatoscopic methods are available for diagnosing and predicting such kinds of skin cancers. But, medical professionals find it difficult to diagnose at some kind of images at the early stages. An automated methodology to predict such types of skin lesions would be better for such a diagnosis. In the present work, a new computer-assisted algorithm called RESNET50-WHO (RWHO) has been introduced to predict and diagnose BCC skin cancer. The method uses a combination of deep learning algorithm RESNET 50 and a metaheuristic algorithm, called wildebeest herd optimization (WHO) Algorithm to do prediction. The initial features from the images are extracted using RESNET 50. The output is given to the WHO algorithm to extract the beneficial features to reduce the time complexity. The method is tested using the PH2 dataset. The results obtained using the proposed algorithm is compared with the state-of-art optimization algorithms and evaluated. The conclusive findings specify that the proposed algorithm beats the comparative methods, yielding superior resultsAbstract
How to Cite
Downloads
Similar Articles
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- V. Karthikeyan, C. Jayanthi, Advancements in image quality assessment: a comparative study of image processing and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Aasha, R. Sugumar, Lightweight Feature Selection Method using Quantum Statistical Ranking and Hybrid Beetle-Bat Optimization for Smart Farming , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Mohamed Azharudheen A, Vijayalakshmi V, Improvement of data analysis and protection using novel privacy-preserving methods for big data application , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Yasodha V, V. Sinthu Janita, AI-driven IoT routing: A hybrid deep reinforcement learning and shrike optimization framework for energy-efficient communication , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Abhishek Pandey, V Ramesh, Puneet Mittal, Suruthi, Muniyandy Elangovan, G.Deepa, Exploring advancements in deep learning for natural language processing tasks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- T. Kanimozhi, V. Gowtham Raaj, C. R. Santhosh, Impulsively intended buying behavior: A new horizon of shopping behavior in the online era , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper

