RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.25Keywords:
Deep learning, Convolution neural network, basal cell carcinoma, skin cancer, feature extraction, optimization algorithmDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Basal cell carcinoma (BCC) is a type of skin cancer that initiates from the epithelial cells of our skin. Compared to other forms of cancer, BCC infrequently spreads to other parts of the body. It has a risk of local attack and demolition of surrounding tissues. Typically, BCC shows as one or numerous small, glowing nodules exhibiting central depressions. These knots are commonly found on the sun-exposed skin areas of older adults. Many dermatoscopic methods are available for diagnosing and predicting such kinds of skin cancers. But, medical professionals find it difficult to diagnose at some kind of images at the early stages. An automated methodology to predict such types of skin lesions would be better for such a diagnosis. In the present work, a new computer-assisted algorithm called RESNET50-WHO (RWHO) has been introduced to predict and diagnose BCC skin cancer. The method uses a combination of deep learning algorithm RESNET 50 and a metaheuristic algorithm, called wildebeest herd optimization (WHO) Algorithm to do prediction. The initial features from the images are extracted using RESNET 50. The output is given to the WHO algorithm to extract the beneficial features to reduce the time complexity. The method is tested using the PH2 dataset. The results obtained using the proposed algorithm is compared with the state-of-art optimization algorithms and evaluated. The conclusive findings specify that the proposed algorithm beats the comparative methods, yielding superior resultsAbstract
How to Cite
Downloads
Similar Articles
- Shantanu Kanade, Anuradha Kanade, Secure degree attestation and traceability verification based on zero trust using QP-DSA and RD-ECC , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Expanding the quantity of virtual machines utilized within an open-source cloud infrastructure , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Akram M. Elias, Rayan S. Hamed, Jiyar M. Naji, The impact of bone substitute combined with blood cell progenerators on the healing of surgical bony defects , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Gourav Kalra, Arun Kumar Gupta, Multi-response Optimization of Machining Parameters in Inconel 718 End Milling Process Through RSM-MOGA , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Purnendu B. Acharjee, Bhupaesh Ghai, Muniyandy Elangovan, S. Bhuvaneshwari, Ravi Rastogi, P. Rajkumar, Exploring AI-driven approaches to drug discovery and development , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Vijay Kumar, Priya Thapliyal, Rajesh Rayal, Baljeet Singh Saharan, Arun Kumar, Shweta Sahni, The Molecular Profiling and HCV RNA Quantification to Study the Distribution of Different HCV Genotypes in Accordance to Geographical Condition , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Sangeeta Modi, P Usha, Fault analysis in hybrid microgrid for developing a suitable protection scheme , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- J. Helan Shali Margret, N. Amsaveni, Application of Lotka’s law in Indian cytokine publications: A scientometric study based on web of science during 1998 TO 2022 , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Amita Gupta, A study of the scientific approach inherited in the Indian knowledge system (IKS) , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper