INDUSTRIAL IMPORTANCE OF HALOPHILIC BACTERIA
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2011.02.1.10Keywords:
halophile, bacteria, biotechnological applicationsDimensions Badge
Issue
Section
License
Copyright (c) 2011 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Halophile is a collective name ascribed to organisms capable of surviving in hypersaline environments by their ability to maintain osmotic balance. They are capable of doing so by accumulating salts such as KCl and NaCl within their cytoplasm to such a concentration that it becomes isotonic with the environment. Both eukaryotic and prokaryotic group of organisms have been identified under the category of halophiles. During the last few decades, in the wake of the growing industrial utility of extremophilic microbes, there has been great interest among researchers to explore hypersaline environments for halophilic bacteria with some industrial utility. They are known to produce a variety of products such as light receptor proteins, bioplastic, enzymes, biosurfactants etc. This article highlights some of the latest biotechnological applications of halophilic bacteria.Abstract
How to Cite
Downloads
Similar Articles
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rashmika Vaghela, Dileep Labana, Kirit Modi, Efficient I3D-VGG19-based architecture for human activity recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Abhishek Pandey, V Ramesh, Puneet Mittal, Suruthi, Muniyandy Elangovan, G.Deepa, Exploring advancements in deep learning for natural language processing tasks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- R. Chandra, R. P. Singh, B. K. Prasad, Effect of Genotype and Explant on Shoot Regeneration in Brassica juncea , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Birhanu T Sisay, Jadu K. Agerchu, Gizachew W. Nuraga, Effects of bended NPSB fertilizer rates and varieties on growth and yield of garlic (Allium sativum L.) in Gummer district, Central Ethiopia , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Pankaj Kumar, Ambrish Pandey, Rajendrakumar Anayath, Comparative study of print quality attributes on bio-based biodegradable plastic using flexography and gravure printing process , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- V.Samuthira Pandi, B. R. Senthil kumar, M Anusuya, Annu Dagar, Synthesis and characterization of ZnO, ZnO doped Ag2O nanoparticles and its photocatalytic activity , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- M. Rajalakshmi, V. Sulochana, Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ritu Jain, Ritesh Tiwari, Shailendra Kumar, Ajay Kumar Shukla, Manish Kumar, Awadhesh Kumar Shukla, Description of Medicinal Herb, Perfume Ginger: Hedychium spicatum (Zingiberales: Zingiberaceae) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.