Algorithmic material selection for wearable medical devices a genetic algorithm-based framework with multiscale modeling
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.1.03Keywords:
Wearable medical devices, Material selection framework, Genetic algorithm, Multiscale modeling, Performance assessment, Computational material scienceDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This research presents a novel algorithmic material selection framework for wearable medical devices, utilizing a genetic algorithm-based approach with multiscale modeling. The study employs a comprehensive research methodology encompassing computational modeling, data visualization, and performance assessment. Initially, a diverse set of materials is defined, and their performance scores are assigned to establish a baseline for evaluation. The ensuing data visualization includes a bar chart, a scatter plot, and a line chart, providing insights into material performance, cost-performance relationships, and the convergence of the genetic algorithm, respectively. Performance metrics such as accuracy, precision, and recall are calculated to gauge the algorithm’s efficacy, presented in a bar chart for a nuanced evaluation. Furthermore, a receiver operating characteristic (ROC) curve and a confusion matrix are employed for discriminative ability assessment and detailed classification performance analysis. The results showcase the algorithm’s proficiency in material selection, emphasizing the importance of accuracy, precision, and recall in the complex landscape of wearable medical device development. The abstract concludes with a summary of the implications drawn from each visualization, highlighting the potential of the proposed algorithmic framework to enhance the precision and efficiency of material selection processes for wearable medical devices. This research contributes to the advancement of materials science in healthcare applications, presenting a holistic approach that integrates computational techniques and data-driven methodologies for optimized material selectionAbstract
How to Cite
Downloads
Similar Articles
- Rahul ., Naveen Sharma, Effect of Suspended Particles on a Couple-Stress Rivlin-Ericksen Ferromagnetic Fluid Heated from Below in a Porous Medium, with Varying Gravity and Magnetic Field. , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Saarumathi R, Ritha W, Impregnable inventory stewardship for a closed loop supply chain besides energy usage, defective production and green investment manoeuvring pentagonal fuzzy number , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Naveen Kumar, Renu, Suresh Kumar Gahlawat, Anil Kumar, Vikram Delu, Pooja, Shekhar Anand, Suresh Chandra Singh, Arbind Acharya, Nanoparticles as illuminating allies: Advancing diagnostic frontiers in COVID-19- A review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Suman Kumar Saurabh, Prashant Kumar, Per Recruit Models for Stock Assessment and Management of Carp Fishes in the Pattipul Stream, Sheetalpur, Saran (Bihar) , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Vishnu Prasad C, Ramaprabha D, Do tax compliance costs mediate the relationship between the complexity of tax structure and fairness perceptions? Evidence from manufacturers , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Manisha Anil Vhora, Vidya Bhandwalkar, Prashant Mangesh Rege, AI-driven HR analytics: Enhancing decision-making in workforce planning , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Gaganpreet Kaur Ahluwalia, Jairaj Janakraj Sasane, Ganesh Pathak, Neuromarketing in marketing 6.0: Exploring the intersection of consumer psychology and advanced technologies , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Ratnakaram Raghavendra, Saila K. A. Reddy, Exploring cosmic ray energy loss mechanisms: Insights from Bethe-Bloch, modified bethe-bloch, and inverse compton scattering equations , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Worku Masho, Habtamu Arega, Elias Bayou, Regasa Begna, The Effect of estrus synchronization with prostaglandin (PGF2α) hormone on reproductive performances of Bonga sheep ewes flushed with different local forages in Kaffa zone, Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- P. Janavarthini, Dr. I. Antonitte Vinoline, Green inventory model for growing items with constraints under demand uncertainty , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
<< < 51 52 53 54 55 56 57 58 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sachin V. Chaudhari, Jayamangala Sristi, R. Gopal, M. Amutha, V. Akshaya, Vijayalakshmi P, Optimizing biocompatible materials for personalized medical implants using reinforcement learning and Bayesian strategies , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper

