Location-specific trusted third-party authentication model for environment monitoring using internet of things and an enhancement of quality of service
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.51Keywords:
Trusted third party, Physical unclonable function, Wireless sensor network, Internet of Things, Cluster node, Device fingerprint, X-OR operation.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In the modern digital world, the Internet of Things (IoT) is a modern and advanced technology that interconnects many immeasurable devices. The collection of wireless sensors formed the wireless sensor network. WSN nodes are battery-powered nodes with limited power and computational capability. When using loT-based wireless sensor networks, the nodes are used to communicate with the internet, where there is a need for more secure protocols. In this technological era where time factor plays a key role in everyone’s personal busy life. The need for smart and sensor appliances that work without human intervention can be a solution to some extent for the time factor. IoT is a network where physical objects, vehicles, devices, buildings and many other smart devices are electronically embedded with hardware and software with huge network connectivity. But the communication and data exchange are not that much easy to carry out, it requires a high secured protocol for authentication as well as key encryptions. Besides focusing on secured key distribution importance for enhancing various parameters are also considered which includes, EC additions, multiplications, pairing, hash-to-point operations, security performances, and energy consumption are also considered. In this paper, focuses on “LSTTP” which authenticates the nodes based on the Device Finger Print (DFP) with a Trusted Third Party and proposes the algorithm for enhancing the quality of service parameters such as Throughput, Jitter, Latency and Security.Abstract
How to Cite
Downloads
Similar Articles
- P. John Robinson, P. Susai Alexander, Neural net influenced magdm problem with modified choquet integral aggregation operators and correlation coefficient for triangular fuzzy intuitionistic fuzzy sets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sachin V. Chaudhari, Jayamangala Sristi, R. Gopal, M. Amutha, V. Akshaya, Vijayalakshmi P, Optimizing biocompatible materials for personalized medical implants using reinforcement learning and Bayesian strategies , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- J. M. Aslam, K. M. Kumar, Enhancing security of cloud using static IP techniques , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Chaitanya A. Kulkarni, Sayali Wadhokar, Om C. Wadhokar, Medhavi Joshi, Tushar Palekar, The intersection of cervical cancer treatment and physiotherapy: Current insights and future directions , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Neha R. Kshatriya, Preeti Nair, Social work students’ views on competencies in human resources , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Shivani Goel, Rashmi Ashtt, Monali Wankar, Analyzing the impact of crime on quality of life in Old Delhi: A quantitative approach , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Arunima Dey, New gender representation on the Indian OTT platform: A study on web series “Made in Heaven” , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- G GAYATHRI DEVI, Dr R Radha, Dark web exploitation of women and children: Understanding the phenomenon and combating its impact , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Nitin J. Wange, Sachin V. Chaudhari, Koteswararao Seelam, S. Koteswari, T. Ravichandran, Balamurugan Manivannan, Algorithmic material selection for wearable medical devices a genetic algorithm-based framework with multiscale modeling , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 16 17 18 19 20 21 22 23 24 25 > >>
You may also start an advanced similarity search for this article.

