Cost-based resource allocation method for efficient allocation of resources in a heterogeneous cloud environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.41Keywords:
Cloud computing, Resource allocation, Resource cost, Resource utilization, Heterogeneous cloud environment, Centralized resource allocation.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cloud computing is appealing due to features like adaptability, portability, utility service and on-demand service. Cloud resource providers are a source of computing, and each provider delivers different types of resources. In an active cloud environment, timely resource allocation is more important. In order to increase the effectiveness and user-friendliness of resource allocation in the heterogeneous cloud, the paper suggests an efficient cost-based resource allocation (ECRA) method and framework. In the heterogeneous cloud, there is no centralized resource allocation manager (CRAM) to get all requested resources from a single counter. The proposed methodology for allocating resources divides them according to their cost. The paper’s framework for allocating resources consists of various parts. The Unified Heterogeneous Resource Allocation Manager (UHRAM) part of the framework collects and manages resources from several cloud resource providers. The resource identifier is one of the components in the framework, which is coupled to UHRAM to determine the cost of the resources. The low-cost resources are scheduled and to be in a ready state for allocation. The proposed ECRA is simulated and compared based on parameters like total computation time, response time and resource allocation percentage with existing resource allocation methods. The results prove that the proposed ECRA is efficient in allocating the resources in minimum response time and it allocates maximum resources for lower cost.Abstract
How to Cite
Downloads
Similar Articles
- Temesgen Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- R. Prabhu, P. Archana, S. Anusooya, P. Anuradha, Improved Steganography for IoT Network Node Data Security Promoting Secure Data Transmission using Generative Adversarial Networks , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- M. Rajalakshmi, V. Sulochana, Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- A.P. Asha Sapna, C. Anbalagan, Towards a better living environment-compressive strength and water absorption testing of mini compressed stabilized earth blocks and fired bricks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Jasleen Kaur, Sultan Singh, Assessing the Impact of Stress on the Health and Job Performance of Employees in Indian Banks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- B.V.Thacker, G.P. Vadodaria, G.V. Priyadarshi, M.H. Trivedi, Biopolymer-based fly ash-activated zeolite for the removal of chromium from acid mine drainage , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Neeraj ., Anita Singhrova, Quantum Key Distribution-based Techniques in IoT , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Birhanu T Sisay, Jadu K. Agerchu, Gizachew W. Nuraga, Effects of bended NPSB fertilizer rates and varieties on growth and yield of garlic (Allium sativum L.) in Gummer district, Central Ethiopia , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Purnendu B. Acharjee, Bhupaesh Ghai, Muniyandy Elangovan, S. Bhuvaneshwari, Ravi Rastogi, P. Rajkumar, Exploring AI-driven approaches to drug discovery and development , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sheena Edavalath, Manikandasaran S. Sundaram, MARCR: Method of allocating resources based on cost of the resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper