Exploring AI-driven approaches to drug discovery and development
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.48Keywords:
AI-driven drug discovery, Pharmaceutical research, Target identification, Personalized medicine, Ethical considerations, Regulatory frameworks.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The integration of artificial intelligence (AI) into drug discovery and development has ushered in a transformative era in pharmaceutical research. The research explores the profound impact of AI-driven approaches in drug discovery and development, demonstrating, that computational intelligence and biomedicine synergize to enhance innovation, efficiency, and precision in pharmaceutical science. AI’s influence spans multiple phases of drug development, from target identification and validation to the optimization of drug candidates, while also facilitating personalized medicine and expediting drug repurposing. Recent studies underscore the precision and swiftness that AI brings to the discovery of drug candidates and the prediction of molecular properties, illustrating the potential advantages of AI in pharmaceutical research. However, AI’s application in healthcare demands cautious consideration, as concerns such as model interpretability, ethical data usage, and regulatory frameworks loom large. The research also the critical need for ethical and secure data utilization. It investigates the methodology employed to create data visualizations that offer comprehensive insights into the advantages and disadvantages of AI algorithms in drug discovery. The analysis emphasizes that a judicious and context-specific approach to AI algorithm selection is essential to harness the transformative power of AI while mitigating its limitations.Abstract
How to Cite
Downloads
Similar Articles
- Bajeesh Balakrishnan, Swetha A. Parivara, E-HRM: Learning approaches, applications and the role of artificial intelligence , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Manish Kumar, Nirupama Prakash, Saket Bihari, The role of public-private partnerships in facilitating international migration of semi-skilled workers–A case study of Varanasi and nearby districts , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- M. Rajalakshmi, V. Sulochana, Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Vaibhav, Raj K Tiwari, Low power three-stage OTA using reverse nested frequency compensation without nulling resistor , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Hariharan V.S, Phaneendra S, Evaluating the combustion characteristics of methanol-gasoline blends in IC engines , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ambica Batas, Udayakumara Ramakrishna B.N, Abuse of Dominant Position in the Realm of the Professional Sports Industry , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Isaac Asampana, Henry M. Akwetey, Ben Ocra, Jones Y. Nyame, Albert A. Akanferi, Hannah A. Tanye, Factors motivating the adoption of virtual learning environments in higher education. Is gender relevant? , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Nisha Patil, Archana Bhise, Rajesh K. Tiwari, Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Chetna Dhull, Asha ., Impact of crop insurance and crop loans on agricultural growth in Haryana: A factor analysis approach , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 31 32 33 34 35 36 37 38 39 40 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Nisha Rathore, Purnendu B. Acharjee, K. Thivyabrabha, Umadevi P, Anup Ingle, Davinder kumar, Researching brain-computer interfaces for enhancing communication and control in neurological disorders , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper