A smart irrigation monitoring service using wireless sensor networks
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.44Keywords:
Smart irrigation, Soil moisture, Crop yields, IoT, Zigbee protocol.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The present research uses wireless sensor networks (WSN) to create a smart watering system. The system’s ability to perform real-time monitoring and management of irrigation makes sure that crops get the right quantity of water depending on their unique needs. The suggested method boosts agricultural yields, decreases labor costs, and improves water usage efficiency. The system uses a field-deployed network of inexpensive wireless sensors to track the soil moisture levels in real time. The central controller utilizes the wirelessly sent sensor data to decide when and how much water should be applied to the crops. Utilizing wireless protocols like Zigbee, these nodes connect to a central gateway, where the data is processed and examined to establish the ideal watering needs for each crop. The technology is scalable and simple to install in larger agricultural fields. The study’s findings indicate that the system can boost crop yields by up to 30% while boosting water usage efficiency by up to 60%. Farmers may decrease their water use, save time and money, and enhance their profitability by adopting the smart irrigation monitoring service powered by WSN.Abstract
How to Cite
Downloads
Similar Articles
- Chinnadurai U, A. Vinayagam, Energy efficient routing with cluster approach in wireless networks – A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Sachi Kumari, Amrendra Kumar Jha, STUDY ON DIVERSITY OF RICE FIELD BLUE-GREEN ALGAE FROM RICE FIELD OF CHAPRA IN BIHAR , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Basant Narain Singh, NITROGENOUS FERTILIZATION LEVELS AND ROOT MYCORRHIZAL COLONIZATION ON PLANT GROWTH AND PRODUCTIVITY IN WHEAT CROPS , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Sabeerath K, Manikandasaran S. Sundaram, ESPoW: Efficient and secured proof of ownership method to enable authentic deduplicated data access in public cloud storage , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Vishal Panghal, Asha Singh, Dinesh Arora, Nidhi Ahlawat, Sunder S. Arya, Sunil Kumar, Horizontal flow biochar amended constructed wetlands as a sustainable approach for rural wastewater treatment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Abhinav P. Yadav, Shubham Gudadhe, Sarika Kumari, Sadanand Maurya, Manikant Tripathi, Awadhesh K. Shukla, Assessment of heavy metal contamination in Trifolium alexandrium and Spinacia oleracea using ICP-MS: A comparative analysis across different districts in eastern Uttar Pradesh , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Annalakshmi D, C. Jayanthi, A secured routing algorithm for cluster-based networks, integrating trust-aware authentication mechanisms for energy-efficient and efficient data delivery , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sudheer Choudari, K. Rajasekhar, Ch. Sudheer, Comparative study of the foundation model of a 220 kV transmission line tower with different footing steps - Finite element analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- B. R. Jaipal, Food and Feeding Ecology of Nilgai (Boselaphus tragocamelus) in the Thar Desert of Rajasthan, India , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
You may also start an advanced similarity search for this article.

