Hybrid fuzzy and fire fly algorithm-based MPPT controller for PV system using super lift boost converter
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.09Keywords:
Simplified firefly algorithm, Maximum power point tracking, PVDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study suggests a new simplified firefly algorithm (SFA) for maximum power point tracking (MPPT) of the solar system under conditions of partial shadowing. The disregarded and coefficients are present in the simplified firefly method, which is different from the regular firefly algorithm. The updated β coefficient for each iteration step is the second new feature, which helps to accelerate convergence. This approach is suggested to find the best PV system MPPT solution for three different shaded circumstances. The proposed method produced results with the highest possible power and efficiency. The ripple performed better than the conventional FA under steady-state conditions. The suggested algorithm’s key advantages over the conventional firefly algorithm are its simplicity, quicker convergence, and accuracy.Abstract
How to Cite
Downloads
Similar Articles
- Radha K. Jana, Dharmpal Singh, Saikat Maity, Modified firefly algorithm and different approaches for sentiment analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Kirti Gupta, Parul Goyal, Modified-multi objective firefly optimization algorithm for object oriented applications test suites optimization , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Ravi Kumar P, C. Gowri Shankar, Optimizing power converters for enhanced electric vehicle propulsion: A novel research methodology , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Muthuvel Balasubramanian, Jonnakuti V. G. Rama Rao, Surya C. P. R. Sanaboina, Vavilala Venkatesh, Amalodbhavi Sanaboina, Tracking and control of power oscillation dampings in transmission lines using PV STATCOM , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- P. Rathinabhagya, J. Merline Vinotha, Fuzzy vehicle routing problem for a municipal solid waste management system with greenhouse gas emission at various disposal stages , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Manan Pathak, Dishang Trivedi Trivedi, Field-effect limits and design parameters for hybrid HVDC – HVAC transmission line corridors , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Prithi M., Sudhakar S., Effect of autoregulatory progressive resistance exercise on hip extensor and knee flexor muscles on power, balance, and Ollie performance among skateboarders , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- M. Prabhu, A. Chandrabose, Optimization based energy aware scheduling in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.

