Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.08Keywords:
Customer churn, Commercial bank of ethiopia, Gradient boosting classifier, Extreme gradient boosting classifier, and Light gradient boosting machine classifier.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The number of service providers is increasing rapidly in every business. These days, there is plenty of options for customers in the banking sector when choosing where to put their money. As a result, customer churn and engagement have become one of the top issues for most of the banks. In this paper, a method to predict customer churn in a Bank using machine learning techniques, which is a branch of artificial intelligence, is proposed. The research promotes the exploration of the likelihood of churn by analyzing customer behavior. random forest (RF), logistic regression (LR), gradient boosting classifier (GBC), extreme gradient boosting classifier (EGBC), and light gradient boosting machine classifier (LGBCMC) are used in this study. Also, some feature selection methods have also been done to find the more relevant features and verify system performance. The experimentation was conducted on the churn modeling dataset from Kaggle. The results are compared to find an appropriate model with higher precision and predictability. As a result, using the Random Forest model after oversampling is better than other models in terms of accuracy. The experimental result shows that the Light Gradient Boosting Machine classifier outperformed with an accuracy of 98%, a precision of 97%, and a recall of 100%, with an AUC of 99% than other proposed supervised machine learning algorithms with balanced datasets across all evaluation metrics.Abstract
How to Cite
Downloads
Similar Articles
- Bayelign Abebe Zelalem, Ayalew Ali Abebe, Financial strategy and private commercial banks’ profitability in the emerging market: Evidence from Ethiopia , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Ayalew Ali, Sitotaw Wodajio, The effect of risk management on the bank’s financial stability in the emerging economy , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Jadhav Girish Vasantrao, Chirag Patel, AT&C and non-technical loss reduction in smart grid using smart metering with AI techniques , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Bayelign Abebe Zelalem, Ayalew Ali Abebe, Dividend policy and banks’ performance: Assessing the relevance versus irrelevance theory , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Bayelign Abebe, Ayalew Ali, Linking globalization to commercial banks’ performance in Ethiopia , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- V. Seethala Devi, N. Vanjulavalli, K. Sujith, R. Surendiran, A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Regasa Begna, Worku Masho, Wondosan Wondimu, Yaregal Tilahun, Tilahun Bekele, Benyam Tadesse, Haile Negash, Participatory evaluation and demonstration of productive performance of Bovans Brown chicken under village production system in Menit Shasha Woreda, West Omo Zone, Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Ayalew Ali, Determinants of banks profitability: Do capital structure and dividend policy matters? , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
You may also start an advanced similarity search for this article.

