An implementation of secure storage using blockchain technology on cloud environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.37Keywords:
blockchain technology, cloud environment, implementation, secure storageDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Data generation and consumption have significantly increased recently, necessitating the need for secure and dependable file storageAbstract
solutions. The vulnerability of current centralized storage solutions to data breaches and hackers compromises the security and
integrity of user data. These problems may have a workable solution in a decentralized file storage system. In order to offer a secure
and dependable storage solution, this paper proposes a blockchain-based file storage (BBFS) system that takes advantage of features
like immutability, transparency, and security. Any user can upload unlimited files (one at a time) with this proposed system. Users can
download and access those files on their machines as well as all other peers. As soon as a peer uploads a file, it is placed in a block
along with the user name, file size, and file information. It is not possible to change or remove these blocks because they are added
to the current blockchain. These blocks can be connected with cloud storage, giving users a safe place to store and access their files
that cannot be altered. By integrating this proposed system with cloud storage, customers can take advantage of the scalability and
security of cloud services as well as the immutability and security of blockchain. The proposed system addresses the cost and scalability roblems that make to be widely applicable.
How to Cite
Downloads
Similar Articles
- Kunwar Ananad Singh, Poonam Pandey, ROLE OF ANTHROPOGENIC EMISSIONS IN CLIMATE CHANGE , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Nand Kishore, Abhaya Kumar Singh, THE ROLE OF REMOTE SENSING TECHNOLOGY IN COUNTERNAXALITE OPERATIONS: PROBLEMS AND PROSPECTS , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Maya Kumari, Vikas Y Patade, Z Ahmad, TRANSGENIC APPROACH TOWARDS DEVELOPMENT OF COLD STRESS TOLERANT VEGETABLES FOR HIGH ALTITUDE AREAS , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Dushyant Dave, Naresh Vyas, Impact of Textile Effluents on Soil in and Around Pali, Western Rajasthan, India , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- B Supraja, B Ramachandra, N Venkatasubba Naidu, Analytical Method Development and Validation Analysis for Quantitative Assessment of Thifluzamide by HPLC Procedure , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Arun Kumar Sharma, Vinay Sharma, Jyoti Saxena, Bindu Yadav, Afroz Alam, Anand Prakash, Partial purification and characterization of protease enzyme from soil borne bacteria , The Scientific Temper: Vol. 7 No. 1&2 (2016): THE SCIENTIFIC TEMPER
- Nagendra Kumar Yadav, PESTICIDE TOXICITY AND BIOCHEMICAL CHANGES IN FRESHWATER FISHES , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Rajesh Rayal, Riya Malik, Sanjay Madan, Anju Thapliyal, Drifting-Density and Diversity of Aquatic Mites in the Spring- Fed Stream Heval from Garhwal Himalaya , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Manisha Pallvi, Carlson’s Trophic State Index of Shatiya Wetland in Gopalganj District of Bihar , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Deo Narayan, C. D. Agashe, K. D. Verma, Impact of Different Individual Games on Selected Personality Traits , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
<< < 22 23 24 25 26 27 28 29 30 31 > >>
You may also start an advanced similarity search for this article.