EAM: Enhanced authentication method to ensure the authenticity and integrity of the data in VM migration to the cloud environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.1.29Keywords:
Data migration, Data authentication, Authenticity, Data integrity, Cloud security, Hashing.cDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cloud is a prominent technology today to provide computing resources to users. In previous days, industries or enterprise users are maintaining their data on-premises. Therefore, it creates many management issues in the industries. Cloud gives solutions to industries to maintain their data in the cloud data center. As a result, many industries are outsourcing their data to the cloud. When outsourcing, the data are migrated along with Virtual Machines (VM). During the migration, the data are vulnerable to attack. As a result, the data may tamper with fault content by the adversarial. Therefore, it is necessary to maintain data authenticity and integrity verification during the migration. This paper proposes an authentication mechanism to verify the data authenticity when migrated from on-premises to off-premises. The paper proposes a novel procedure to migrate the data in the virtual machine. After migration, the data is verified for authenticity using the proposed mechanism. An enhanced hashing procedure is proposed in the paper to verify the data authenticity. The proposed authentication mechanism is simulated in the cloud environment, and results are given in the tables and graphs. The results show that the EAM efficiently provides authentication and integrity of data migrated from on-premises to the cloud data center.Abstract
How to Cite
Downloads
Similar Articles
- S. TAMIL FATHIMA, K. FATHIMA BIBI, Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- M. Yamunadevi, P. Ponmuthuramalingam, A review and analysis of deep learning methods for stock market prediction with variety of indicators , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Shivali Kundan, Neha Verma, Zahid Nabi, Dinesh Kumar, Satellite radiance assimilation using the 3D-var technique for the heavy rainfall over the Indian region , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- C. Premila Rosy, Clustering of cancer text documents in the medical field using machine learning heuristics , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Raghavan Santhanam, P Venugopal, Sreoshi Dasgupta, R. S. Kumar, Saravanan M.P, Ravindra A. Kayande, Analysis of organizational culture and e-commerce adoption in the context of top management perspectives , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Purnendu B. Acharjee, Bhupaesh Ghai, Muniyandy Elangovan, S. Bhuvaneshwari, Ravi Rastogi, P. Rajkumar, Exploring AI-driven approaches to drug discovery and development , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Neha Chitale, Lajwanti Lalwani, A Bibliometric Analysis of Global Research From 1928 To 2019 On Mobilization with Movement on Functional Disability in Low Back Pain , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Raja Pathak, Shweta Kumari, An investigation on the impact of vedic mathematics on higher secondary school student’s ability to expand mathematical units , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Ishfaq Ahmad Malik, Showkat Ahmad Shah, Economic impact of COVID-19 on Ethiopian micro, small, and medium enterprises and policy measures , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Raja Selvaraj, Manikandasaran S Sundaram, ECM: Enhanced confidentiality method to ensure the secure migration of data in VM to cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper

