Analysis of multiple sleeps and N-policy on a M/G/1/K user request queue in 5g networks base station
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.2.21Keywords:
Mobile Network, Wireless Network, Energy Consumption, Multiple Sleeps, N- Policy, Finite capacity.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The primary purpose of green communication is to reduce energy use. The base station (BS) is a radio receiver/transmitter that acts as the wireless network’s hub. It serves as a link between a wired and wireless network. To receive and transmit messages, BS uses a lot of energy. The use of effective sleep and wake-up/setup activities with an acceptable delay helps reduce base station power consumption. In this paper, the BS’s service process is modelled as a finite buffer queue with close down, sleep, and setup. After a certain number of user requests (URs) have accumulated in the system, to awaken the BS from multiple sleeps (MS) the -Policy is implemented. To produce probability generating functions, the supplementary variable approach is applied. The UR’s mean delay and the BS’s mean power consumption are calculated using simulation. According to computational studies, multiple sleeps with -policy consume less power than multiple sleeps without -policy.Abstract
How to Cite
Downloads
Similar Articles
- T. R. Raajpandiyan, Syed T. Hussainy, U. Rizwan, A bivariate replacement policy (T, N) under partial product process , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- P. J. Robinson, S. W. A. Prakash, Stochastic artificial neural network for magdm problem solving in intuitionistic fuzzy environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rajesh Kumar Singh, Abhishek Kumar Mishra, Ramapati Mishra, Hand Gesture Identification for Improving Accuracy Using Convolutional Neural Network(CNN) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Maysam A. Khabisi, Azar B. Masoudzade, Neda F. Rad, On the effectiveness of receiving teacher and peer feedback as a mediator on Iranian English as a Foreign Language learners’ writing skill: Mobile-mediated vs. direct instruction , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Milindkumar N. Dandale, Amar P. Yadav, P. S. K. Reddy, Seema G. Kadu, Madhusudana T, Manthan S. Manavadaria, Deep learning enhanced drug discovery for novel biomaterials in regenerative medicine utilizing graph neural network approach for predicting cellular responses , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Gitesh Kalita, NEP 2020 policies for inclusive education , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Muthuvel Balasubramanian, Jonnakuti V. G. Rama Rao, Surya C. P. R. Sanaboina, Vavilala Venkatesh, Amalodbhavi Sanaboina, Tracking and control of power oscillation dampings in transmission lines using PV STATCOM , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Allin Joe D, Thiyagarajan Krishnan, A modified sierpinski carpet antenna structure for multiband wireless applications , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Selva Kumar D, Revisiting the challenges of disinvestment practices and central public sector enterprises (CPSEs): Indian empirical evidence , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.