Water Quality Prediction using AI and ML Algorithms
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.2.46Keywords:
Water pollution, Quality parameters, Water Quality Index, AI & ML AlgorithmsDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Expeditious growth in industrial amelioration to support the country’s expanding population and economy has contaminated our water resources like never before. Water pollution is one of the most alarming concerns for us today. Prediction of water quality has grown in popularity in the field of water environmental science. Data-driven strategies are becoming increasingly fascinating and beneficial as we extend our understanding of water means. Data mining, which can manage the complexity within the provided data, is a direct method for exploration.Abstract
How to Cite
Downloads
Similar Articles
- S. C. Prabha, P. Sivaraaj, S. Kantha Lakshmi, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Vandana, PANKAJ KUMAR, Vikas Jangra, Ambrish Pandey, An empirical study on the print suitability of hybrid modulated screen and digitally modulated screen in offset printing process , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Isreal Zewide, Wondwosen Wondimu, Melash Woldu, Kibnesh Admasu, Maize (Zea mays L.) Productivity as affected by different ratios of fertilizer (blended NPS) and inter row spacing at West Omo, South-West Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Krutuja S. Gadgil, Prabodh Khampariya, Shashikant M. Bakre, Investigation of power quality problems and harmonic exclusion in the power system using frequency estimation techniques , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Moyliev Gayrat, Yunuskhodjaev Akhmadkhodja, Saidov Saidamir, Babakhanov Otabek, Mirsultanov Jakhongir, To study references and analysis of an experimental model for skin burns in rats , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Meera Yadav, F. D. Yadav, Effect of TLCV on Metabolic Parameter and Yield of Tomato , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- AMIR ALI, PERWEZ AHMAD, STUDIES ON TOTAL PLASMA VOLUME, CORPUSCULAR VOLUME AND BLOOD WEIGHT IN RELATION TO BODY WEIGHT IN A FRESH WATER TELEOSTEAN FISH MYSTUS CAVASIUS (HAM.) , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Tewoderos Legesse, Bekelech Sharew, Evaluation of white seeded sesame (Sesamum indicium L.) genotypes on growth and yield performance in Menit Goldya Woreda of West Omo Zone, SWE , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.