Enhanced AES-256 cipher round algorithm for IoT applications
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.1.22Keywords:
AES, Cryptography, Decryption, Enhanced security, EncryptionDimensions Badge
Issue
Section
Objectives: Networks have become a significant mode of communication in recent years. As a result, internet security has become a critical requirement for secure information exchange. Cryptography is used to securely send passwords over large networks. Cryptographic algorithms are sequences of processes used to encipher and decipher messages in a cryptographic system. One of those is the Advanced Encryption Standard (AES), which is a standard for data encryption in hardware and software to hide sensitive and vital information. The main objective is to design an AES system with modifications by the addition of primitive operations which can withstand several attacks and is more efficient.Abstract
Method: AES works with three different key lengths: 128-bit keys, 192- bit keys, and 256-bit keys. The early rounds of AES have a poor diffusion rate. Better diffusion properties can be brought about by putting in additional operations in the cipher round and key generation algorithm of the conventional AES.
Findings: The diffusion characteristics of the conventional AES and the proposed methodology are compared using the avalanche effect. The proposed AES algorithm shows an increased avalanche effect, which proves it to be more secure than the conventional AES. The proposed algorithm is executed on Vivado 2016.2 ISE Design Suite and the results are targeted on Zybo–Zynq Z-7010 AP SoC development board.
Novelty: In addition, this paper also proposes an improved AES algorithm that was accomplished by altering the sub-bytes operation. This change was made to make it more reliant on round keys. This algorithm was also extended to a higher key length of 256 bits which makes the algorithm less vulnerable to attacks.
How to Cite
Downloads
Similar Articles
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Surender Singh, Deep Lal, Rachna Thakur, Suchitra Devi, Socio-economic Compulsions on Climate Change and Energy Security of India , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Enhanced LSTM for heart disease prediction in IoT-enabled smart healthcare systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, The role of technology in implementing effective education for children with learning difficulties , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Kavitha V, Panneer Arokiaraj S., RPL-eSOA: Enhancing IoT network sustainability with RPL and enhanced sandpiper optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- A. Rukmani, C. Jayanthi, Trust and security in wireless sensor networks: A literature review of approaches for malicious node detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- K. Akila, Location-specific trusted third-party authentication model for environment monitoring using internet of things and an enhancement of quality of service , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- G. Hemamalini, V. Maniraj, Enhanced otpmization based support vector machine classification approach for the detection of knee arthritis , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.