Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.11.03Keywords:
Big data, Ensemble model, Adaptive voting classifier, Machine learning, students’ academic performance.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Online learning platforms have transformed education by offering flexible, accessible, and interactive learning experiences. With advancements in technology and the increasing need for remote learning, these platforms empower students to study from anywhere at their own pace, offering various resources such as video lectures, assignments, quizzes, and discussion forums. These tools facilitate both self-paced learning and collaborative activities, allowing students to interact with peers, engage in group discussions, and work on joint projects. Big data analytics, in particular, plays a critical role in understanding student behaviour and cognitive processes, providing educators with valuable insights to personalize learning experiences more effectively. This study focuses on analysing student performance on online collaborative platforms through big data analytics, utilizing an ensemble model that integrates multiple Machine Learning (ML) algorithms to predict student outcomes more accurately. The proposed ensemble model achieved an accuracy of 98.87%, outperforming traditional classifiers in both accuracy and precision, particularly in identifying cognitive traits and predicting academic performance. These findings underscore the value of ensemble of ML in big data optimizing student engagement and success.Abstract
How to Cite
Downloads
Similar Articles
- S ChandraPrabha, S. Kantha Lakshmi, P. Sivaraaj, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Shubharani Muragod, Sangeeta Kharde, Premenstrual syndrome among adolescent girls and its influence on academic performance- A cross-sectional study , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Jyoti Vishwakarma, Sunil Kumar, Mapping Research on ESG Disclosure and Firm Performance: A Systematic Bibliometric Analysis , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Shefali Bahadur, Rohit Kushwaha, M. Venkatesan, Ramya Singh, Manish Mishra, Strategic alignment in multispecialty hospitals: Implementing a balanced scorecard approach for optimal performance , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Manpreet Kaur, Shweta Mishra, A smart grid data privacy-preserving aggregation approach with authentication , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Ensemble classifiers with hybrid feature selection approach for diagnosis of coronary artery disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sachin V. Chaudhari, Jayamangala Sristi, R. Gopal, M. Amutha, V. Akshaya, Vijayalakshmi P, Optimizing biocompatible materials for personalized medical implants using reinforcement learning and Bayesian strategies , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Nisha Patil, Archana Bhise, Rajesh K. Tiwari, Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

