Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.11.03Keywords:
Big data, Ensemble model, Adaptive voting classifier, Machine learning, students’ academic performance.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Online learning platforms have transformed education by offering flexible, accessible, and interactive learning experiences. With advancements in technology and the increasing need for remote learning, these platforms empower students to study from anywhere at their own pace, offering various resources such as video lectures, assignments, quizzes, and discussion forums. These tools facilitate both self-paced learning and collaborative activities, allowing students to interact with peers, engage in group discussions, and work on joint projects. Big data analytics, in particular, plays a critical role in understanding student behaviour and cognitive processes, providing educators with valuable insights to personalize learning experiences more effectively. This study focuses on analysing student performance on online collaborative platforms through big data analytics, utilizing an ensemble model that integrates multiple Machine Learning (ML) algorithms to predict student outcomes more accurately. The proposed ensemble model achieved an accuracy of 98.87%, outperforming traditional classifiers in both accuracy and precision, particularly in identifying cognitive traits and predicting academic performance. These findings underscore the value of ensemble of ML in big data optimizing student engagement and success.Abstract
How to Cite
Downloads
Similar Articles
- S. Gomathi, C. Radhika, A secure messaging application using steganography and AES encryption a dual-layer secure messaging system , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Sheena Edavalath, Manikandasaran S. Sundaram, MARCR: Method of allocating resources based on cost of the resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V.Samuthira Pandi, B. R. Senthil kumar, M Anusuya, Annu Dagar, Synthesis and characterization of ZnO, ZnO doped Ag2O nanoparticles and its photocatalytic activity , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shamba Gowda, AR Chethan Kumar, S. Srinivasaragavan, Scholarly communication behavior in forestry research: A bibliometric analysis of global publications , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Sivasankar G. A, Study of hybrid fuel injectors for aircraft engines , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- A. Appu, How does brand equity influence the intent of e-bike users? Evidence from Chennai city , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Seema Bhakuni, Application of artificial intelligence on human resource management in information technolgy industry in India , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Finney D. Shadrach, Harsshini S, Darshini R, Grapevine leaf species and disease detection using DNN , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Minas M. Ali, Farah H. Alenezi, Nora F. Alfayyadh, Sara Y. Alhassoun, Rahaf M. Alanzi, Waseem Radwan, Conservative esthetic dentistry in Riyadh – Saudi Arabia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Bhavesh Parekh, Parthiv Patel, Unravelling Indianness in R.K. Narayan’s novels: A multidisciplinary exploration of culture, tradition and modernity , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
<< < 47 48 49 50 51 52 53 54 55 56 > >>
You may also start an advanced similarity search for this article.

