Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.11.03Keywords:
Big data, Ensemble model, Adaptive voting classifier, Machine learning, students’ academic performance.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Online learning platforms have transformed education by offering flexible, accessible, and interactive learning experiences. With advancements in technology and the increasing need for remote learning, these platforms empower students to study from anywhere at their own pace, offering various resources such as video lectures, assignments, quizzes, and discussion forums. These tools facilitate both self-paced learning and collaborative activities, allowing students to interact with peers, engage in group discussions, and work on joint projects. Big data analytics, in particular, plays a critical role in understanding student behaviour and cognitive processes, providing educators with valuable insights to personalize learning experiences more effectively. This study focuses on analysing student performance on online collaborative platforms through big data analytics, utilizing an ensemble model that integrates multiple Machine Learning (ML) algorithms to predict student outcomes more accurately. The proposed ensemble model achieved an accuracy of 98.87%, outperforming traditional classifiers in both accuracy and precision, particularly in identifying cognitive traits and predicting academic performance. These findings underscore the value of ensemble of ML in big data optimizing student engagement and success.Abstract
How to Cite
Downloads
Similar Articles
- Hashmat Ali, Nishant Soren, Rohit Kumar Ravi, Kunal Kumar, Anjali, Evaluation of Standard Changes in Free Energy During Complexation of p-chlorobenzoylthioacetophenone with Some Bivalent Transition Metals , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Mohiyuddeen Hafzal, Management strategies for sustainable development goals: A roadmap to Viksit Bharat@2047 , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Mantsha Rayeen, Roshni Sengupta, Sanjay Chaudhary, Short-term changes in lens vault post implantable collamer lens surgery in myopic patients , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- SOBTI R.C., KIRTIPAL N., THAKUR H., JANMEJA A.K., POLYMORPHISM IN INTERLEUKIN-4 GENE AND THE RISK OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE IN A NORTH INDIAN POPULATION : A CASE-CONTROL STUDY , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- Modenisha U, W. Ritha, Sasitharan Nagapan, Analysing the cost structure of construction sectors considering carbon emission factors , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Parwez Ahmad, Md Jamaluddin, Estimation of Some Heavy Metal Estimation at Sites of Saryug River as Lateral Tributary of the Ganga in Northern Bihar , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Akila L, Comparative study on Datafication and Digitization , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Preeti Gupta, Shalie Malik, Photoperiodic Supervision and Adaptability in Avian System , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Anita Yadav, Neerja Kapoor, Shivji Malviya, Sandeep K. Malhotra, COVID-19 Pandemic and the Global Vaccine Strategy , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Abhishek K Pandey, Amrita Sahu, Ajay K Harit, Manoj Singh, Nutritional composition of the wild variety of edible vegetables consumed by the tribal community of Raipur, Chhattisgarh, India , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 39 40 41 42 43 44 45 46 47 48 > >>
You may also start an advanced similarity search for this article.

