DAJO: A Robust Machine Learning–Based Framework for Preprocessing and Denoising Fetal ECG Signals
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.9.17Keywords:
Preprocessing, Denoising, Filtering Methods, Segmentation, Feature Extraction, Fetal ECGDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Accurate Fetal Heart Rate (FHR) detection and fetal electrocardiogram (fECG) analysis are vital for early identification of fetal distress. However, clinical fECG signals are often degraded by maternal ECG, baseline drift, powerline interference, and uterine contractions, reducing diagnostic reliability. To address this, the study presents a DAJO, a preprocessing framework that combines Denoising, Adaptive filtering, Joint FHR detection, and Optimized feature extraction. The workflow employs ensemble filters for noise suppression, adaptive filtering to enhance fetal-specific components, and a modified Hamilton–Tompkin’s method for robust FHR estimation. CNN-based feature extraction further ensures compact yet discriminative signal representation. Experimental results demonstrate that DAJO achieves 97% accuracy, 95% precision, 92% recall, 98% specificity, and a 95% F1 score, confirming its effectiveness. This highlights the DAJO as a robust preprocessing solution that preserves physiological integrity while improving automated FHR detection.Abstract
How to Cite
Downloads
Similar Articles
- REKHA KHANDAL, SHILPENDRA KOUR, RASHMI TRIPATHI, ANTIBACTERIAL ACTIVITY OF PHYTO-CHEMICALS OBTAINED FROM LEAFEXTRACTS OF SOME MEDICINAL PLANTS ON PATHOGENS OF SEMI-ARID SOIL , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- Amita Kanwar, B.R. Jaipal, Use of dens by the desert fox in the desertic environment , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Sheena Edavalath, Manikandasaran S. Sundaram, Cost-based resource allocation method for efficient allocation of resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R. Chandran, J. Selvam, Evaluating the impact of MOOC participation on skill development in autonomous engineering colleges , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Santima Uchukanokkul, Bijal Zaveri, Impact of emerging global educational trends on overseas education programs for aspiring students in South East Asia and South Asia: A decadal analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Ashutosh Pathak, Review- Significant Advancements in Electrochemical Detection of Neuron-Specific Enolase , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Amala Deepa V., T. Lucia Agnes Beena, Enhancing data imputation in complex datasets using Lagrange polynomial interpolation and hot-deck fusion , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Reena Lawrence, Reena Lawrence, Kapil Lawrence, A NEW GLYCOSIDE FROM THE BUDS OF CLOVE GROWN IN NORTH INDIAN PLAINS , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- S. Joshitha, A. Yakshitha, Mariyam Adnan, Diversification and application of Warli art on apparels , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
<< < 20 21 22 23 24 25 26 > >>
You may also start an advanced similarity search for this article.

