A pattern-driven Huffman encoding and positional encoding for DNA compression
Downloads
Published
Keywords:
Compression Ratio, Deoxyribonucleic Acid, Huffman Coding, Positional Encoding TechniqueDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Researchers from bioinformatics, biology, biotechnology, and medical sciences who are engaged in genetic data analysis face significant challenges in the manipulation and storage of large datasets. Compression algorithms are essential for increasing storage capacity and reducing the number of bits required to represent nucleotide bases. The Pattern-driven Huffman Encoding and Positional Encoding for DNA Compression (P2DNAComp) algorithm is designed to compress both non-repetitive and repetitive pattern bases within DNA sequences. This demonstrates the algorithm’s adaptability across various pattern types in genomic data. P2DNAComp employs a systematic approach to efficiently compress DNA sequences. It reads the sequences and constructs a symbol table to maintain the positional values of repeated patterns. Using Huffman coding, the algorithm determines the optimal bit representation for each repeated pattern to maximize storage efficiency. For non-repetitive patterns, a coded table is created to store positional values. Subsequently, a positional encoding technique is applied to minimize the number of bits needed for efficient representation. The maximum positional value is set as the upper limit, and the minimum number of bits required is computed using a binary logarithm function. The final compressed sequence is generated by encoding both repetitive and non-repetitive patterns. Using standard datasets from the GenBank database, the performance of the P2DNAComp algorithm was evaluated based on compression ratio, compression/decompression time, and compression gain. The algorithm achieved an average compression ratio of 1.09 bits per base (bpb), an average compression gain of 86.279%, and average compression and decompression times of 0.547 and 0.563 seconds, respectively.Abstract
How to Cite
Downloads
Similar Articles
- V. Karthikeyan, C. Jayanthi, Advancements in image quality assessment: a comparative study of image processing and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Abhishek K Pandey, Amrita Sahu, Ajay K Harit, Manoj Singh, Nutritional composition of the wild variety of edible vegetables consumed by the tribal community of Raipur, Chhattisgarh, India , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Rajesh Rayal, H.K. Joshi, Deeksha Kapruwan, Neelam Shah, Shraddha Bharti, Sakshi Saxena, Reproductive Capacity of Noemacheilus rupicola and Sex Ratio from River Yamuna, Uttarakhand, India , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- NAVEEN KUMAR SHARMA, KAPIL KUMAR, CAUSES AND EFFECT OF ACID RAIN – A REVIEW , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- T. Ramyaveni, V. Maniraj, Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- B. R. JAIPAL, POPULATION STRUCTURE OF NILGAI (BOSELAPHUS TRAGOCAMELUS) IN THE SEMI ARID REGION OF THE THAR DESERT , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- S. S. Rath, SEX RATIO AND FREQUENCY DISTRIBUTION OF COCOON WEIGHT IN WILD AND REARED VARIETY OF ANTHERAEA MYLITTA , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- C. Agilan, Lakshna Arun, Optimization-based clustering feature extraction approach for human emotion recognition , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Ayesha Shakith, L. Arockiam, EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Vinay Viratia, Sandeep Kumar, Shama Praveen, Tarang Shrivastava, Priyanka, Enhancing Trunk Control Balance in Children with Spastic Diplegic Cerebral Palsy: Comparative Effectiveness of the Vestibular Stimulation Technique and Standard Treatment , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

