The multi-objective solid transshipment problem with preservation technology under fuzzy environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.1.14Keywords:
Solid transshipment problem, Multi objective transshipment problem, Preservation technology, Neutrosophic fuzzy environment, Weighted tchebycheff metrics programmingDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To evaluate the efficiency of the preservation technology in the transshipment problem for transporting perishable products throughout the entire distribution system. A mathematical model for multi-objective solid transshipment problem incorporating preservation technology is formulated and a numerical example is provided to validate the effectiveness of this proposed model. To make the problem realistic, all the parameters are considered under a neutrosophic fuzzy environment. Weighted tchebycheff metrics programming has been used to obtain the Pareto-optimal solution of the proposed model. Comparative analysis has been done for multi-objective solid transshipment problems with and without preservation technology. Additionally, comparative analysis has been made for both multi-objective solid transshipment and multi-objective solid transportation problems with and without the inclusion of preservation technology. Also, comparative analysis has been made for multi-objective solid transportation problems with and without the inclusion of preservation technology under the Neutrosophic and Pythagorean fuzzy environments. Optimum Solutions obtained for a given numerical example using the prescribed method reveal that the multi-objective solid transshipment problem with preservation technology gives the minimum deterioration rate and higher transportation cost than the case without preservation technology. While the transportation cost increases, incorporating preservation technology into the transshipment problem enhances both the quality and quantity of perishable items in the distribution system. The efficiency of the multi-objective solid transshipment problem with preservation technology under a neutrosophic fuzzy environment is not yet investigated in the literature.Abstract
How to Cite
Downloads
Similar Articles
- Reena Lawrence, Reena Lawrence, Kapil Lawrence, A NEW GLYCOSIDE FROM THE BUDS OF CLOVE GROWN IN NORTH INDIAN PLAINS , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- S. Joshitha, A. Yakshitha, Mariyam Adnan, Diversification and application of Warli art on apparels , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- V. Mahalakshmi, M. Manimekalai, Location Specific Paddy Yield Prediction using Monte Carlo Simulation incorporated Long Short-Term Memory , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Tarandeep Kaur, Sangeeta Taneja, Kashmiri Embroidery: Sustaining Cultural Heritage in a Globalized World , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Sheena Edavalath, Manikandasaran S. Sundaram, Cost-based resource allocation method for efficient allocation of resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Susithra N, Rajalakshmi K, Ashwath P, Performance analysis of compressive sensing and reconstruction by LASSO and OMP for audio signal processing applications , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Panda Aditi Ambarish, Kaushik Trivedi, Immersive learning: A virtual reality teaching model for enhancing english speaking skills , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Yanbo Wang, Yonghong Zhu, Jingjing Liu, Research on the current situation and influencing factors of college students learning engagement in a blended teaching environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Mohiyuddeen Hafzal, Gayathri B.J., M. Meghana Shet, Shaping the future: Education and skill development for Viksit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
<< < 11 12 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- M. Monika, J. Merline Vinotha, A resilient supply chain model integrating demand variability and carbon emissions in imperfect production systems , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, Optimization of a Lean Vendor–Buyer Supply Chain Model under Neutrosophic Fuzzy Environment with Transportation, Loading, and Unloading Considerations , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A Fuzzy Supply Chain Model Evaluating Energy Management Systems under Imperfect Production and Uncertain Costs , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, A New Approach for Solving Bilevel Fractional/quadratic Green Transportation Problem by Implementing AI with Multi Choice Parameters Under Uncertainty , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, Bilevel Fractional/Quadratic Green Transshipment Problem by Implementing AI traffic control system with Multi Choice Parameters Under Fuzzy Environment , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper

