Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.47Keywords:
Students, Sports behavior, Deep learning, Multi-perceptron neural network, Mutual, Behavioral feature analysis.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Sports performance predictions are essential in understanding student interest rates. Early indications of student progress facilitate athletic departments to improve their learning interests and make students perform better. Interests in sports involve understanding key physical factors that significantly impact students’ sports behavior and various other influencing factors. Deep learning techniques were used to develop a predictive model for student interest performance and support to identify the essential relationship influencing students’ sports behavior. Identifying sports interests is complex because student interests represent different features. Existing methods cannot predict the features and the relationship between their related attributes. Therefore, previous methods had low accuracy high time, and error rate performance. To resolve this problem, a deep learning (DL) based sports interest prediction model was proposed using a deep spectral multi-perceptron neural network (DSMPNN) to identify student sports interests. Initially, the preprocessing is carried out by Z-score normalization to verify the actual margins of student interest rate to make normalization by comparing the ideal and essential margins of student interest through behavioral feature analysis using student behavioral sports interest rate (SBSIR). According to the feature dimensionality reduction, the non-relational features are reduced using the spider foraging feature selection model (SFFM) to select the essential features. Then, a deep spectral multilayer perceptron neural network (DSMPNN) is applied to predict student interest by class sports interest. The classifier proves the prediction accuracy, precision, and recall rate of up to 96% high performance to analyze the interests of the sport. The suggested system also produces higher performance than the other system.Abstract
How to Cite
Downloads
Similar Articles
- Deepak K. Sharma, Vandana ., Pankaj Kumar, Ambrish Pandey, Jitender Pal, Investigating physico-chemical characteristics of water and wastewater in the printing industry , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- R. Porselvi, D. Kanchana, Beulah Jackson, L. Vigneash, Dynamic resource management for 6G vehicular networks: CORA-6G offloading and allocation strategies , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Prakash Lakhani, Premasish Roy, Souren Koner, Deepa Nair, D. Patil, Mona Sinha, Exploring the influence of work-life balance on employee engagement in Mumbai’s real estate industry , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- N. Ruba, A. S. A. Khadir, Session password Blum–Goldwasser cryptography based user three layer authentication for secured financial transaction , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Ramya Singh, Archana Sharma, Nimit Gupta, Nursing on the edge: An empirical exploration of gig workers in healthcare and the unseen impacts on the nursing profession , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Z. Admasu, E. Bayou, Current population size and risk status of the indigenous endangered Sheko cattle breed in south-west Ethiopia , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Suresh L. Chitragar, Occupational Structure of Population in the Malaprabha River Basin, Karnataka State, India; A Geographical Approach , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Firdaus Benazir, Reena Mohanka, S Rehan Ahmad, Trichoderma atrobrunneum: In vitro analysis of exoenzyme activity and antagonistic potential against plant pathogen from agricultural fields in the Patna region, India , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Kurubara Amaresh, M. S. Ganachari, Revanasiddappa Devarinti , Enhancing participant understanding and ethical considerations in clinical trial biospecimen research: Insights from an oncology setting in India , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Saumya Trivedi, Amit Sinha, Satyendra P. Singh, Ramya Singh, A study on factors influencing lending decisions for MSMEs by scheduled commercial banks in the CGTSME scheme , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 40 41 42 43 44 45 46 47 48 49 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, Swarm intelligence-driven HC2NN model for optimized COVID-19 detection using lung imaging , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- J. Fathima Fouzia, M. Mohamed Surputheen, M. Rajakumar, Hybrid pigeon optimization-based feature selection and modified multi-class semantic segmentation for skin cancer detection (HPO-MMSS) , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- S. Mohamed Iliyas, M. Mohamed Surputheen, A.R. Mohamed Shanavas, Enhanced Block Chain Financial Transaction Security Using Chain Link Smart Agreement based Secure Elliptic Curve Cryptography , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- S. Mohamed Iliyas, M. Mohamed Surputheen, A.R. Mohamed Shanavas, Trust-based symmetric game theory for physical layer security in wi-fi communication , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- S. Munawara Banu, M. Mohamed Surputheen, M. Rajakumar, Bio-Inspired and Machine Learning-Driven Multipath Routing Protocol for MANETs Using Predictive Link Analytics , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- S. Munawara Banu, M. Mohamed Surputheen, M. Rajakumar, Enhanced AOMDV-based multipath routing approach for mobile ad-hoc network using ETX and ant colony optimization , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper

