A study on energy sum of dominating sets in East Indian states
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.4.02Keywords:
Total Dominating set, Laplacian matrix, Laplacian matrix of total dominating set for vertex domination, Laplacian matrix of total dominating set for edge domination, Energy sum, East India.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This article explores the spectral properties of dominating sets in a map network for the East Indian states, with a focus on computing various energy sums using the eigen values of matrices depending on the Laplacian. Dominating sets—subsets of vertices that ensure each node of a graph is either included in or close to a node in the set—are critical for network optimization, resource allocation, and regional planning. This study uses three types of Laplacian matrices: The Laplacian Matrix, the Laplacian Matrix of Vertex Dominance, and the Laplacian Matrix of Edge Domination. The structural and dominating characteristics of the graph are characterized by calculating the eigen values for those matrices and examining the energy sums associated with them. The results are confirmed using computational coding in the MATLAB application, ensuring correctness and providing a consistent framework for spectral graph study. The findings contribute to our understanding of the network's resilience, connectivity, and optimization potential, as well as give important details for East India's growth in infrastructure and regional planning. This paper explains why spectral graph theory can be used to investigate map-based networks and provides a versatile approach for future research in related disciplines.Abstract
How to Cite
Downloads
Similar Articles
- V Vijayaraj, M. Balamurugan, Monisha Oberai, Machine learning approaches to identify the data types in big data environment: An overview , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Isreal zewide, Abde S. Hajigame, Wondwosen Wondimu, Kibinesh Adimasu, Response of Bread Wheat (Triticum aestivum L.) Varieties to Blended NPSB Fertilizer Levels in Sori Saylem District, South-West Ethiopia , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Desalu Tamirat, Tesfaye Getachew , Worku masho, Zelalem Admasu , Morphological and morphometric features of indigenous chicken in North Shewa zone, Oromia regional state, Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Bhuvaneshwarri Ilango, A machine translation model for abstractive text summarization based on natural language processing , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Deepika Tripathi, Dr Rishi Saxena, Dr Sippy Agarwal, Exploring the relationship between bacterial vaginosis and socioeconomic factors in Bundelkhand region: A cross-sectional study , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Syam Sundar. S, Direct reuse of scour and bleach effluent water for cotton knitted fabrics , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Saba Naaz, K.B. Shiva Kumar, Integrated deep learning classification of Mudras of Bharatanatyam: A case of hand gesture recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Urmi Chakravorty, Social media’s detrimental outcomes on personal relationships , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Roopshree Banchode, Sai Pranathi Bhallamudi, S. P. Kanchana, Evaluation of the Quality of Commonly Used Edible Oils and The Effects of Frying , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
<< < 79 80 81 82 83 84 85 86 87 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Chaotic-based optimization, based feature selection with shallow neural network technique for effective identification of intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper

