Priority based parallel processing multi user multi task scheduling algorithm
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.04Keywords:
Task scheduling, Multi User, Parallel Processing, Edge server, Data centreDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Mobile Edge computing is one of the emerging fields in cloud environments where numerous user applications leverage a wide range of strong and powerful resources. To ensure optimal utilization, cloud computing resources such as storage, applications, and other services require effective management and scheduling. Managing resources is particularly challenging in scientific workflows, which involve extensive computations and interdependent operations. Task scheduling is the crucial challenge in this setup since the edge setup is migrated near to the user’s environment most of the computation is going to be handled by the edge server. Various algorithms and techniques have been proposed to address this issue. This paper explores a novel scheduling method for tasks offloaded by different users in a multi-user access computing paradigm. Also, the priority of the task is being considered while the tasks from mobile users are assigned to the data center. Considering the priority of the task, the tasks are being scheduled parallelly to the data centers. The completion time and the CPU utilization are extremely enhanced by using the proposed PBPPMUMTSA- Priority Based Parallel Processing Multi User Multi Task Scheduling Algorithm.Abstract
How to Cite
Downloads
Similar Articles
- C. Muruganandam, V. Maniraj, A Self-driven dual reinforcement model with meta heuristic framework to conquer the iot based clustering to enhance agriculture production , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- V. Karthikeyan, C. Jayanthi, Advancements in image quality assessment: a comparative study of image processing and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Nilesh M. Patil, P M. Krishna, G. Deena, C Harini, R.K. Gnanamurthy, Romala V. Srinivas, Exploring real-time patient monitoring and data analytics with IoT-based smart healthcare monitoring , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sheena Edavalath, Manikandasaran S. Sundaram, MARCR: Method of allocating resources based on cost of the resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rekha Raghavendra, Shobha Gowda, Jissy Thomas, Fingerprint doorlock system using Arduino uno , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Pravin P. P, J. Arunshankar, Development of digital twin for PMDC motor control loop , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Brigith Gladys L, J. Merline Vinotha, Sustainable rough multi-objective two-stage solid transportation problem of third-party e-commerce logistic providers with conditional fixed parameter on safety , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Anuj Kumar, R C Vishwakarma, K Sunita, Exploring Novel Panorama Within Plant-microbe Interface , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.

