Psychosocial factors affecting risk of post-partum depression among mothers and their Birth satisfaction: A systematic review
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.3.07Keywords:
Postpartum depression, Birth satisfaction, Psychosocial factors, Maternal mental health, Childbirth experienceDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Negative birth experiences have been associated with an increased risk of post-partum depression (PPD). However, an exhaustive systematic literature review of existing literature examining this correlation is lacking. This systematic review investigates the association between birth satisfaction and the likelihood of post-partum depression. Additionally, it seeks to identify modifiable psychosocial factors influencing this relationship by conducting a systematic literature review of existing literature. Studies published between 2010 and 2024 were systematically reviewed, employing three electronic databases in compliance with PRISMA reporting guidelines. The inclusion criteria focused on studies conducting conceptual analysis on post-partum depression, birth satisfaction, or both. Search strategies utilized a wide range of terms, focusing on English-language publications. The systematic literature review was conducted in three phases: abstract review, title review, and full-text review. Twenty-one studies meeting the inclusion criteria were analyzed. A significant correlation was found between postnatal depression and birth dissatisfaction. Furthermore, psychosocial factors such as social support, maternal self-esteem, and healthcare facilities were identified as crucial factors influencing post-partum depression and birth satisfaction. These findings underscore the importance of tailored interventions to support maternal mental health during the post-partum period.Abstract
How to Cite
Downloads
Similar Articles
- Madhuri Prashant Pant, Jayshri Appaso Patil, Unlocking the potential of big data and analytics significance, applications in diverse domains and implementation of Apache Hadoop map/reduce for citation histogram , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Santosh Kumar Sahu, B. R. Senthil kumar, Y. Aboobucker parvez, Ashish Verma, Assessment of noise levels by using noise prediction modeling , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Jayendra K. Singh, Gyan P. Singh, Sanjay K. Singh, Son preference and children sex composition in Uttar Pradesh: An empirical analysis , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Manikant Tripathi, Sukriti Pathak, Ranjan Singh, Pankaj Singh, Pradeep K. Singh, Nivedita Prasad, Sadanand Maurya, Awadhesh Kumar Shukla, Adsorptive remediation of hexavalent chromium using agro-waste rice husk: Optimization of process parameters and functional groups characterization using FTIR analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Saarumathi R, Ritha W, Conglomerate Charge and Merchandise Swayed Inventory Model for Fragile Vendibles , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- ARVIND MISHRA , 1SHUBHA NIGAM, CPM TRIPATHI, ARSENIC CONTAMINATION OF GROUND WATER IN ENDEMIC AREA OF UTTAR PRADESH: A CASE STUDY , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- D. Jayaprasanth, J. Arul Melissa, Extended Kalman filter-based prognostic of actuator degradation in two tank system , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Brijesh Singh, Ajay Massand, Determinants of Gen Z’s adoption of chatbots in online shopping: An empirical investigation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Preeti Gupta, Shalie Malik, Photoperiodic Supervision and Adaptability in Avian System , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.

