Secure degree attestation and traceability verification based on zero trust using QP-DSA and RD-ECC
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl-2.30Keywords:
Degree attestation, Blockchain, Data encryption, Smart contract, Hash-based message authentication code, Elliptic curve cryptography, Higher education credentials.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The process of rendering authenticity to the Degree Certificate (DC) is known as Degree Attestation (DA). None of the prevailing works have focused on zero trust-based DA, verification, and traceability for secured DA. So, zero trust-based secured DA, verification, and traceability of degree credentials are presented in the paper. Primarily, to upload the DC of the student, the university registers and logs in to the Blockchain (BC). Subsequently, by utilizing radioactive decay-based elliptic curve cryptography (RD-ECC), the DC is secured. Next, by utilizing Glorot initialization-based Proof-of-Stake (GPoS), the data is stored in the BC. Further, to verify the traceability of the data, a Smart Contract (SC) is created. In the meantime, the student registers and logs in to the BC and gives attestation requests to the university. By utilizing rail fence cipher (RFC) RD-ECC hash-based message authentication code (RFCR-HMAC), the university authenticates the request. By utilizing a quadratic probing-based digital signature algorithm (QP-DSA), the university attests the DC after authentication. Lastly, by utilizing RD-ECC, the attested certificate is encrypted and sent to the student. Hence, the certificate is secured with an encryption time (ET) of 5971ms and DA is performed with a Signature Generation Time (SGT) of 6637ms.Abstract
How to Cite
Downloads
Similar Articles
- Aakanksha Laiker, Promil Pande, Contribution of policy and regulations to enhance Transparency and Traceability in the Garment Industry , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Kumari Neha, Amrita ., Quantum programming: Working with IBM’S qiskit tool , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- P. K. MISHRA, S. K. SHARAN, M. K. SINHA, D. CHAKRAVORTY, DETERMINATION OF TEMPERATURE SENSITIVE DIAPAUSE TERMINATION STATE OF DABA TRIVOLTINE ECORACE OF ANTHERAEA MYLITTA DRURY , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- Rahul Maurya, Thirupataiah B, Lakshminarayana Misro, Thulasi R, Effect of the Solvent Polarity and Temperature in the Isolation of Pure Andrographolide from Andrographis paniculata , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- R. Sudha, B Indira, M Kalidas, Kalluri Rama Krishna, M. Jithender Reddy, G.N.R. Prasad, E-commerce in the B2B market: solutions for the point of sale , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- M. Iniyan, A. Banumathi, The WBANs: Steps towards a comprehensive analysis of wireless body area networks , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Madhu Bala Sharma, Pooja Yadav, A survey of attitude and behavior of Indian equity investors towards cryptocurrencies: Using smart-PLS and systematic equation modeling (SEM) approach , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Subin M. Varghese, K. Aravinthan, A robust finger detection based sign language recognition using pattern recognition techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Deepa, I.S. Arafat, M. Sathya Priya, S. Saravanan, An improved spectrum sharing strategy evaluation over wireless network framework to perform error free communications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- M. Prabhu, A. Chandrabose, Optimization based energy aware scheduling in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 18 19 20 21 22 23 24 25 26 27 > >>
You may also start an advanced similarity search for this article.