An efficient key establishment for pervasive healthcare monitoring
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.28Keywords:
Authentication, Cryptanalysis, Secure healthcare systems, Healthcare data security, Key establishment, Security, IoT, Machine learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Health is one of the issues that present more challenges in the world. These challenges not only come from the requirements of the region itself yet in addition result from outside conditions that impact individuals’ health conditions and access to therapeutic administrations. To augment the security strength of real-time healthcare applications in the IoT environment, a novel framework, namely, an Enhanced and IoT-based medical healthcare security scheme (EIMSS), has been proposed in this chapter. The proposed EIMSS adapts the AUP authentication technique proposed in the previous chapter for authentication while transferring the patient’s data. The proposed EIMSS approach offers flexible services to aged people like confidentiality, integrity, and authentication for protecting their vital biological and medical data. The simulation results, analysis and comparison confirm that the proposed EIMSS outperforms existing protocols with improved security strength.Abstract
How to Cite
Downloads
Similar Articles
- Priya Rani, Sonia, Garima Dalal, Pooja Vyas, Pooja, Mapping electric vehicle adoption paradigms: A thematic evolution post sustainable development goals implementation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Allin Joe D, Thiyagarajan Krishnan, A modified sierpinski carpet antenna structure for multiband wireless applications , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- S Prabhakaran, Yugeshkrishnan M, Santhiya M, Danush Kumar S M, Smart Dustbin using IOT , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, A comparative analysis of virtual machines and containers using queuing models , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Dhulasi Priya S, Saranya K G, Significance of artificial intelligence in the development of sustainable transportation , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Mahima Srivastava, Chemical facets of environment-friendly corrosion impediment of low-carbon steel in aqueous solutions of inorganic mineral acid , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Kanthalakshmi S, Nikitha M. S, Pradeepa G, Classification of weld defects using machine vision using convolutional neural network , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Vijaykumar S. Kamble, Prabodh Khampariya, Amol A. Kalage, Application of optimization algorithms in the development of a real-time coordination system for overcurrent relays , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Vijai K. Visvanathan, Karthikeyan Palaniswamy, Thanarajan Kumaresan, Green ammonia: catalysis, combustion and utilization strategies , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- R. Chandran, J. Selvam, Evaluating the impact of MOOC participation on skill development in autonomous engineering colleges , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 33 34 35 36 37 38 39 40 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper