Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.36Keywords:
Heart disease, Data mining, Machine learning, Classification, Prediction, Feature selection.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Heart disease remains a leading cause of mortality worldwide, emphasizing the urgent need for effective classification and prediction methodologies. This literature review explores various data mining and machine learning approaches utilized in the classification and prediction of heart disease. We systematically analyze a diverse range of techniques, including decision trees, support vector machines, artificial neural networks, and ensemble methods, highlighting their strengths and limitations. The review further examines pre-processing methods, feature selection, and extraction techniques that significantly impact model performance. Additionally, we discuss the integration of hybrid approaches and deep learning methods, showcasing their potential to enhance predictive accuracy. Recent advancements in data handling and algorithmic efficiency are also highlighted, demonstrating the promising role of machine learning in addressing the complexities of heart disease diagnosis. This review aims to provide a comprehensive understanding of current trends and future directions in heart disease classification and prediction, paving the way for improved diagnostic tools and health outcomes.Abstract
How to Cite
Downloads
Similar Articles
- Ramalakshmi V, Prioritizing the factors affecting employee relations and its influence on job performance , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Theophilus Deenadayal, Tarun Jain, Floristic composition in Paramananda Devara Gudda A sacred grove at Lingadahalli Village Devadurga Taluk Raichur District Karnataka, India , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Vipul Sundavadara, Riddhi SanghvI, Behavioral finance: A systematic literature review , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Vijay Sharma, Nishu, Anshu Malhotra, An encryption and decryption of phonetic alphabets using signed graphs , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Shemal Dave, Dhaval Vyas, Jyotindra Jani, Capital adequacy and systemic risk: Evidence from selected Indian private sector banks , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Anilkumar K. Varsat, Sociolinguistics competence development in the ESL classroom: Challenges and opportunities , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Mohiyuddeen Hafzal, Gayathri B.J., M. Meghana Shet, Shaping the future: Education and skill development for Viksit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Vaishali P. Kuralkar, Prabodh Khampariya, Shashikant M. Bakre, Study and analysis of the stochastic harmonic distortion caused by multiple converters in the power system (micro-grid) , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Chirag Darji, Rajesh Chauhan, Views of undergraduates on Vikshit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Brigith Gladys L, J. Merline Vinotha, Sustainable rough multi-objective two-stage solid transportation problem of third-party e-commerce logistic providers with conditional fixed parameter on safety , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
<< < 40 41 42 43 44 45 46 47 48 49 > >>
You may also start an advanced similarity search for this article.

