The socio-technical opportunities and threats of crowdsensing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.34Keywords:
Mobile crowd sensing, Machine learning, Privacy-preserving techniques, Sensitive information.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The exponential growth of mobile crowd sensing (MCS) has provided unparalleled opportunities to collect large-scale data through a network of mobile devices, empowering diverse applications in smart cities, healthcare, and environmental monitoring. However, the inherently participatory nature of MCS raises critical privacy concerns, as sensitive user information is often at risk of exposure. This literature review examines recent advancements in employing machine learning techniques to enhance privacy preservation in MCS frameworks. It explores methods such as federated learning, differential privacy, and encryption-enhanced neural networks that aim to minimize data leakage while maintaining model accuracy. Additionally, this review analyzes the efficacy and limitations of various privacy-preserving algorithms, particularly regarding their adaptability to different MCS contexts and their impact on computational overhead and communication efficiency. Through a comprehensive synthesis of current studies, this review highlights emerging trends, identifies research gaps, and suggests future directions for developing robust privacy-preserving machine learning models tailored to the unique demands of MCS systems.Abstract
How to Cite
Downloads
Similar Articles
- R.R. Jenifer, V.S.J. Prakash, Detecting denial of sleep attacks by analysis of wireless sensor networks and the Internet of Things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Chetna Dhull, Asha ., Impact of crop insurance and crop loans on agricultural growth in Haryana: A factor analysis approach , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Ravi Chaware, Sajid Anwar, Sunil Prayagi, Thermoelastic response of a finite thick annular disc with radiation-type conditions via time fractional-order effects , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- J. M. Aslam, K. M. Kumar, Enhancing security of cloud using static IP techniques , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Manish Kumar, Nirupama Prakash, Saket Bihari, The role of public-private partnerships in facilitating international migration of semi-skilled workers–A case study of Varanasi and nearby districts , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Kanthalakshmi S, Nikitha M. S, Pradeepa G, Classification of weld defects using machine vision using convolutional neural network , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Dadhaniya Deepa Karshanbhai, Nilofar Bhatti, Bioremediation of Textile Dyes Using Native Microorganisms: Sustainable Microbiological Approaches , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Mohiyuddeen Hafzal, Gayathri B.J., M. Meghana Shet, Shaping the future: Education and skill development for Viksit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Archana Dhamotharan, Kanthalakshmi Srinivasan, Analog Circuits Based Fault Diagnosis using ANN and SVM , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Varsha Kachhela, Jalpa Rank, Charmy Kothari, Screening of environmental bacteria for multiple dye decolorization capabilities in textile wastewater , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
<< < 31 32 33 34 35 36 37 38 39 40 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- M. Prabhu, A. Chandrabose, Optimization based energy aware scheduling in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Kalaiselvi, A. Chandrabose, Fuzzy logic-driven scheduling for cloud computing operations: a dynamic and adaptive approach , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Distribution of virtual machines with SVM-FFDM approach in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Expanding the quantity of virtual machines utilized within an open-source cloud infrastructure , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper

