Evaluating the impact of MOOC participation on skill development in autonomous engineering colleges
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.07Keywords:
Massive open online courses (MOOCs), Higher education, Engineering colleges, Descriptive statistics, Regression analysis.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The integration of massive open online courses (MOOCs) in higher education has introduced new avenues for skill development and academic achievement. This study investigates the impact of MOOC participation on students’ academic performance within autonomous engineering colleges. Specifically, we examine whether students who engage in MOOCs achieve higher academic outcomes compared to their peers who follow traditional coursework only. A sample of 450 engineering students from autonomous colleges was surveyed regarding their MOOC participation, academic performance, and engagement levels. To analyze the hypothesis that MOOC participation positively influences academic performance, multiple statistical methods were employed. Descriptive statistics provided an overview of student participation and performance trends, while a t-test was used to compare academic performance scores between MOOC participants and non-participants. Regression analysis was applied to determine if MOOC participation is a significant predictor of academic success. Additionally, a Chi-square test examined the association between MOOC engagement and academic achievement. The results indicate that MOOC participation positively correlates with academic performance, supporting the hypothesis that MOOCs can serve as a valuable supplement to traditional education. These findings underscore the potential of MOOCs to enhance learning outcomes in engineering education and suggest that autonomous colleges might benefit from promoting MOOC engagement as part of their curriculum.Abstract
How to Cite
Downloads
Similar Articles
- Thilagavathi K, Thankamani K., P. Shunmugapriya, D. Prema, Navigating fake reviews in online marketing: Innovative strategies for authenticity and trust in the digital age , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Pooja Soni, Vikramaditya Dave, Sujit Kumar, Hemani Paliwal, A comparative study of AI-driven techno-economic analysis for grid-tied solar PV-fuel cell hybrid power systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- L. Vamsi Narasimha Rao, P.S.Prakash, M.Veera Kumari, Improvement of power system operation using a novel hybrid optimization method for optimal allocation of facts devices in radial transmission line , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Nitin J. Wange, Sachin V. Chaudhari, Koteswararao Seelam, S. Koteswari, T. Ravichandran, Balamurugan Manivannan, Algorithmic material selection for wearable medical devices a genetic algorithm-based framework with multiscale modeling , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- K. Gokulkannan, M. Parthiban, Jayanthi S, Manoj Kumar T, Cost effective cloud-based data storage scheme with enhanced privacy preserving principles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Mohiyuddeen Hafzal, Gayathri B.J., M. Meghana Shet, Shaping the future: Education and skill development for Viksit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Shefali Bahadur, Rohit Kushwaha, M. Venkatesan, Ramya Singh, Manish Mishra, Strategic alignment in multispecialty hospitals: Implementing a balanced scorecard approach for optimal performance , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Duyu Taaza, Sunil S. Jalalpure, Bhaskar Kurangi, In-vitro and in-silico analysis of hesperidin and naringin for metabolic syndrome management , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- B. Kalpana, P. Krishnamoorthy, S. Kanageswari, Anitha J. Albert, Machine learning approaches for predicting species interactions in dynamic ecosystems , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.