Dynamic resource allocation with otpimization techniques for qos in cloud computing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.06Keywords:
Cloud computing, quality of service, Optimization techniques, Dynamic resource allocation.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Ensuring the quality of service (QoS) in cloud computing environments requires efficient resource allocation mechanisms to manage dynamic workloads and meet user demands. This paper proposes a dynamic resource allocation strategy that integrates gravitational search optimization (GSO) with Harris Hawks optimization (HHO) to optimize resource utilization and maintain QoS in cloud infrastructures. The proposed hybrid approach combines the global search capabilities of GSO, inspired by the law of gravity, with the exploitation and exploration strategies of HHO, mimicking the cooperative hunting behavior of Harris hawks. This synergy enables adaptive and efficient allocation of computational resources based on real-time workload fluctuations, reducing response times, minimizing energy consumption, and preventing Service Level Agreement (SLA) violations. By predicting workload variations and adjusting resource allocation dynamically, the proposed method ensures higher reliability, scalability, and cost-effectiveness compared to traditional resource allocation techniques. Simulation results demonstrate that the GSO-HHO-based approach outperforms conventional optimization algorithms in balancing the trade-offs between performance and resource efficiency, making it a robust solution for maintaining QoS in cloud computing environments.Abstract
How to Cite
Downloads
Similar Articles
- Sahaya Jenitha A, Sinthu J. Prakash, A general stochastic model to handle deduplication challenges using hidden Markov model in big data analytics , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- M. Prabhu, A. Chandrabose, Optimization based energy aware scheduling in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- B. Kalpana, P. Krishnamoorthy, S. Kanageswari, Anitha J. Albert, Machine learning approaches for predicting species interactions in dynamic ecosystems , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Prashantha B. S., M. Dorairajan , Vijayaraj Kumar U.S., S. Srinivasaragavan, A Scientometric Study of Quality Assessment and Higher Education , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Dhabha Nehal Hitendrabhai, Sudhakar S, Effect of multidirectional plyometric training along with core strengthening among tennis players on dynamic balance, vertical jump performance and agility , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- I. Francina Nishandhi, A Study on an Optimal Four Echelon Inventory Model for Growing Items with Imperfect Quality and Trade Credit Financing , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- P. Vinnarasi, K. Menaka, Advanced hybrid feature selection techniques for analyzing the relationship between 25-OHD and TSH , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Prince Williams, Nilesh M. Patil, Allanki S. Rao, Chandra M. V. S. Akana, K. Soujanya, Aakansha M. Steele, Transformative effects of connectivity technologies on urban infrastructure and services in smart cities , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- N. Anbarasi, K. Anitha, S. Hemalatha, A study on energy sum of dominating sets in East Indian states , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Bommaiah Boya, Premara Devaraju, Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

