A novel approach to heart disease classification using echocardiogram videos with transfer learning architecture and MVCNN integration
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.33Keywords:
Transfer Learning, VGG19, DenseNet201, InceptionV3, MVCNN architecture, Ensemble modelsDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The echocardiogram, also known as a cardiac ultrasound, captures real-time images of the heart’s chambers and valves. Ultrasonic waves are used in this method to penetrate the skin and generate the pattern of the heart’s movement, allowing healthcare professionals to assess its overall function. In this research study, we propose a novel approach for classifying heart diseases relying on echocardiogram videos using transfer learning and ensemble methods. The approach involves using pre-trained convolutional neural network models such as VGG19, Densenet201, and Inceptionv3 as feature extractors and then training a classifier on top of these extracted features. The pre-trained models have been trained on large datasets with millions of images, making them highly effective feature extractors for various computer vision tasks. The main objective is to leverage the learned representations from these models and apply them to echocardiogram videos for accurate classification of heart diseases. The novel integration of MVCNN (pre-trained convolutional neural network models VGG19, Densenet201, and Inceptionv3) with ensemble methods has led to a significant increase in accuracy, achieving an overall accuracy of 98.09% in classifying heart diseases using echocardiogram videos and achieved AUC-0.82% After implementing the novel integration.Abstract
How to Cite
Downloads
Similar Articles
- Nisha Patil, Archana Bhise, Rajesh K. Tiwari, Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- A. Sandanasamy, P. Joseph Charles, Distributed SDN control for IoT networks: A federated meta reinforcement learning solution for load balancing , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Rita Ganguly, Dharmpal Singh, Rajesh Bose, The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- S. Vanaja, Hari Ganesh S, Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Fauzi Aldina, Yusrizal ., Deny Setiawan, Alamsyah Taher, Teuku M. Jamil, Social science education based on local wisdom in forming the character of students , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Balaji V, Purnendu Bikash Acharjee, Muniyandy Elangovan, Gauri Kalnoor, Ravi Rastogi, Vishnu Patidar, Developing a semantic framework for categorizing IoT agriculture sensor data: A machine learning and web semantics approach , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Bhaskar Pandya, Pradipsinh Zala, Vocational education and lifelong learning: Preparing a skilled workforce for the future , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Roshni Kanth, R Guru, Anusuya M A, Madhu B K, A comprehensive study of AI in test case generation: Analysing industry trends and developing a predictive model , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

