AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.02Keywords:
AI-driven resource management, Virtual machines, Containers, Cloud computing, Performance optimization, Reinforcement learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The accurate calculation and comparison of performance in cloud environments are critical for optimizing resource utilization, particularly with the increasing use of virtual machines (VMs) and containers. This research proposes an AI-driven resource management framework that surpasses traditional machine learning algorithms by enabling real-time, autonomous performance optimization. While machine learning models provide predictive capabilities, they often require manual tuning and retraining for changing workloads. In contrast, the proposed AI-driven system, utilizing techniques such as reinforcement learning and adaptive optimization, continuously adjusts resource allocation based on real-time performance metrics like response time, throughput, and server utilization. This dynamic, self-improving system can respond to fluctuating workloads and network conditions without the need for constant retraining, offering superior flexibility and faster response times. The framework will be validated through extensive experiments across multi-cloud and edge computing environments, demonstrating its ability to significantly reduce calculation time while improving scalability and efficiency. Additionally, this approach incorporates enhanced security mechanisms, combining the isolation benefits of VMs with the lightweight efficiency of containers, providing a comprehensive, real-time solution for cloud-native applications.Abstract
How to Cite
Downloads
Similar Articles
- Nisha Rathore, Purnendu B. Acharjee, K. Thivyabrabha, Umadevi P, Anup Ingle, Davinder kumar, Researching brain-computer interfaces for enhancing communication and control in neurological disorders , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Gaganpreet Kaur Ahluwalia, Jairaj Janakraj Sasane, Ganesh Pathak, Neuromarketing in marketing 6.0: Exploring the intersection of consumer psychology and advanced technologies , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Ritu Jain, Ritesh Tiwari, Shailendra Kumar, Ajay Kumar Shukla, Manish Kumar, Awadhesh Kumar Shukla, Description of Medicinal Herb, Perfume Ginger: Hedychium spicatum (Zingiberales: Zingiberaceae) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- RENA MEHTA, ECO DESIGN IN TEXTILE AND CLOTHING , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- Amresh Kumar Singh, Manjit Singh Chhetri, Pushyamitra Mishra, Toughness and Ductile Brittle Transition Temperature of Different Mineral Filler Reinforced TPOs Composites , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Dattatraya Pandurang Rane, Amey Adinath Choudhari, Rita Kakade, Technology-driven financial inclusion: Opportunities for corporate expansion in emerging markets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Virendra Chavda, Bhavesh J. Parmar, Urvi Zalavadia, Assessment of Omni channel retailing characteristics and its effect on consumer buying intention , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- SHAHID SAMI SIDDIQUE, RAM BABU, INSECT PEST MANAGEMENT OF TEMPERATE FRUIT CROPS , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- Nabab Ali, Equabal Jawaid, Spatial Insect Biodiversity and Community Analysis in Selected Rice Fields of North Bihar , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Duyu Taaza, Sunil S. Jalalpure, Bhaskar Kurangi, In-vitro and in-silico analysis of hesperidin and naringin for metabolic syndrome management , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 21 22 23 24 25 26 27 28 29 30 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- A. Anand, A. Nisha Jebaseeli, A comparative analysis of virtual machines and containers using queuing models , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Bhuvaneswari, A. Nisha Jebaseeli, Multi-model telecom churn prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper