Optimizing power converters for enhanced electric vehicle propulsion: A novel research methodology
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.23Keywords:
Electric Vehicles, Power Converter Optimization, Research Methodology, Simulation-based Design, Vehicle-to-Grid, Sustainable TransportationDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This research paper presents a novel methodology for enhancing power converters in electric vehicle (EV) propulsion systems, focusing on optimizing efficiency, reliability, and performance. It integrates theoretical analysis, simulations, and practical experimentation to address current challenges in power converter technology for EVs. The study begins with a literature review to identify gaps and emerging trends in power converter technologies. A theoretical model is then proposed, incorporating advanced semiconductor materials, innovative circuit topologies, and improved thermal management to boost efficiency and power density. Simulation tools, such as finite element analysis and system-level modeling, are used to validate the model and optimize design parameters. These simulations predict converter behavior under various conditions and loads, providing insights for performance improvements. A prototype power converter based on the optimized design is developed to validate the theoretical predictions. Experimental data is collected through rigorous testing, evaluating factors like efficiency, thermal performance, and response time. The experimental results are compared with simulation outcomes to verify the accuracy of the methodology. The study also explores bidirectional power flow for vehicle-to-grid (V2G) applications, assessing the impact on power converters and their role in energy exchange between EVs and the grid. This research offers a systematic approach to advancing power converters in EV propulsion systems, combining theoretical analysis, simulation-based optimization, and practical testing to contribute to the development of sustainable, high-performance electric transportation.Abstract
How to Cite
Downloads
Similar Articles
- Saguber Ali S Hameed, Prabakaran. J, A study and analysis of e-commerce factors influencing ecotourism online booking behavior , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Nilesh Anute, Geetali Tilak, Revolutionizing e-Learning with AR, VR, And AI , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Suhani Singh, Neelam Panwar, A checklist of parasites collected from the zig-zag eel (Mastacembelus armatus Lacepede) from Bairaj, Bijnor, Uttar Pradesh, India , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Shyamkant M. Khonde, Lata Suresh, Globalization and the evolution of labor: Navigating new frontiers in the global economy , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Pavithra M, Dr. R. Neelaveni, Muthuraman K. R , Kamalesh G, Design of an interactive smart band for intellectually disabled person , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Kumari Neha, Amrita ., Quantum programming: Working with IBM’S qiskit tool , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Anju Bhatnagar, The effect of oxygen bleaching on reactivity of syringyl and guaiacyl units of Eucalyptus tereticornis pulps lignin , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Vijai K. Visvanathan, Karthikeyan Palaniswamy, Thanarajan Kumaresan, Green ammonia: catalysis, combustion and utilization strategies , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Manish K. Srivastava, Nidhi Kesari, Trust in Advertising: A Study of Indian Youth , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Kanthalakshmi S, Nikitha M. S, Pradeepa G, Classification of weld defects using machine vision using convolutional neural network , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 44 45 46 47 48 49 50 51 52 > >>
You may also start an advanced similarity search for this article.