Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.41Keywords:
Plant Classification, Species Identification, Feature Extraction, Optimization, Convolution Neural Networks (CNN), Classification, Machine LearningDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In general, plant classification systems can be a beneficial tool in agriculture, especially when identifying plant types in a systematic what's more, sensible way. Already, plant breeders relied on observation and experienced personnel to distinguish plant varieties. However, some plants, such as leaves and branches, have nearly identical characteristics, making identification difficult. Therefore, there is a need for a system that can solve this problem. Therefore, this study focuses on the characterization of plant leaves using convolution neural network (CNN) techniques. The main idea of this paper is to propose a new deep learning-based model for plant leaf classification. Initially, preprocessing is done using RGB-to-grayscale conversion, histogram equalization, and median filtering to improve the image quality required for further processing. The results show that with the activation layer of the algorithm, 15-layer network design and a trial-training ratio of 70-30, the plant leaf classification system can achieve 90% classification accuracy of coriander and parsley with an error rate of 0.1. Furthermore, due to its high accuracy, the system can be extended to other uses such as identifying plant diseases and species.Abstract
How to Cite
Downloads
Similar Articles
- Prashant Saxena, Kapil Kumar, P. V. Malik, Jyoti Saxena, EFFECT OF PHYSICO-CHEMICAL CHARACTERISTICS ON CYANOBACTERIAL DIVERSITY IN THREE FISH CULTURE PONDS OF MEERUT REGION , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- MRINAL CHANDRA, DEVELOPMENT OF METHOD FOREXTRACTIVE SPECTROPHOTOMETRIC DETERMINATION OF COPPER(II) WITH N-BENZOYL THIOUREATHIOSEMICARBONZONE(MAAPHE) AS AN ANALYTICAL REAGENT , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Sweta Sain, Nilima Kumari, BN Tirpathi, ETHNOBOTANICAL STUDIES ON MEDICINAL PLANTS OF BANASTHALI REGION OF TONK DISTRICT, RAJASTHAN (INDIA) , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Afroz Alam, Krishna Kumar Rawat, Praveen Kumar Verma, Sonu Yadav, Bryodiversity of Eastern Ghats (India) , The Scientific Temper: Vol. 7 No. 1&2 (2016): THE SCIENTIFIC TEMPER
- *HEERA LAXMI JADON, POONAM PRAKASH, SANJEEV PRATAP SINGH, ANTIBACTERIAL ACTIVITY OF NATURAL COMPOUNDS EXTRACTED WITH DIFFERENT SOLVENTS FROM CALOTROPIS PROCERA , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- NEERJA MASIH, BIODIESEL FROM MICROBIAL LIPIDS BY RHODOTORULA Sp: HOPE FOR A BETTER TOMORROW , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- JAY SHANKAR SINGH, D.P. SINGH, R.K GUPTA, GENETICALLY MODIFIED PLANTS : BENEFITS AND ENVIRONMENTAL PROBLEMS , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- R.B. SHARMA, A.K. SHARMA, DARSHNA SHARMA, SEED BORNE FUNGI OF RATI , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- A.K. SHARMA, R.B. SHARMA, BLUE GREEN ALGAE AS MANURE ON GROWTH AND COMPOSITION OF PLANTS , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- E. J. David Prabahar, J. Manalan, J. Franklin, A literature review on the information literacy competency among scholars of co-education colleges and women’s colleges , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 24 25 26 27 28 29 30 31 32 33 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sruthy M.S, R. Suganya, An efficient key establishment for pervasive healthcare monitoring , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper