A framework for diabetes diagnosis based on type-2 fuzzy semantic ontology approach
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.63Keywords:
Diabetes mellitus, Clinical decision support system (CDSS), Ontology reasoning, Functional Electrical Stimulation (FES), Type-2 FuzzyDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Diabetes mellitus is a significant metabolic disorder that may last a lifetime and affects a great number of people throughout the world. Two major critiques that may be levelled at the ontology-based tools that are presently being used to analyse and treat diabetes are an increase in semantic incompatibility and an inability to interpret the information. Both of these complaints have the potential to be severe issues. Furthermore, clinical decision support systems, often known as CDSSs, play an important role in the diagnosis of diabetes. As a consequence, the outcomes of this study project advised that a new semantically intelligent Type-2 fuzzy CDSS for diabetes diagnosis be developed. The following steps are included in the proposed system: feature definition, semantic modelling, type-2 fuzzy modelling, and knowledge reasoning. This research endeavour is critical since there are currently so few works that address the formal integration of ontology semantics with Functional Electrical Stimulation (FES) reasoning, particularly in the medical arena. The system that was constructed takes into consideration the ontology-semantic similarity of the concepts that are relevant to diabetes complications and symptoms while doing a fuzzy rule analysis. The proposed approach is put to the test using a real-world dataset, and the results show that it has the potential to help both individuals and medical experts provide more accurate diabetes diagnoses. The suggested technique was tested on a real dataset, and the findings show that it has the potential to help physicians and patients diagnose diabetes mellitus more correctly.Abstract
How to Cite
Downloads
Similar Articles
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- S. Vanaja, Hari Ganesh S, Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Nithya Raju , Shruthi Deivigarajan, Sindhuja Santhakumar, Sneha Balamurugan, Challenges encountered by healthcare professionals in monitoring adverse events due to medical devices-A review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Dhulasi Priya S, Saranya K G, Significance of artificial intelligence in the development of sustainable transportation , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Rasheedha A, Santhosh B, Archana N, Sandhiya A, Foot sens - foot pressure monitoring systems , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Kinjal K. Patel, Kiran Amin, Predictive modeling of dropout in MOOCs using machine learning techniques , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Geeta S Desai, Santosh Hajare, Sangeeta Kharde, Prevalence of non-alcoholic steatohepatitis in a general population of North Karnataka , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sangeeta Modi, P Usha, Fault analysis in hybrid microgrid for developing a suitable protection scheme , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Suresh Kumar, AGRO-WASTE MANAGEMNT BY VERMICOMPOSTING USING EISENIA FETIDA AND PERIONYX SANSIBARICUS EARTHWORMS , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Rustam Gulomov, Khilolakhon Rakhimova, Avazbek Batoshov, Doniyor Komilov, Bioclimatic modeling of the species Phlomoides canescens (Lamiaceae) , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- T. Ramyaveni, V. Maniraj, Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A novel approach using type-II fuzzy differential evolution is proposed for identifying and diagnosis of diabetes using semantic ontology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R. Sivakumar, S. Vijaya, Eco-epidemiology of prey and competitive predator species in the SEI model , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- G. Hemamalini, V. Maniraj, Enhanced otpmization based support vector machine classification approach for the detection of knee arthritis , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper