An optimized real-time human detected keyframe extraction algorithm (HDKFE) based on faster R-CNN
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.32Keywords:
Keyframe extraction, Faster R-CNN, Closed-circuit television, HDKFE, CBVR, Crime scene investigation.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The aim of this project is to support criminal investigators by utilizing surveillance camera footage in their investigations. To apprehend the culprit, it is necessary to examine the video footage and extract the relevant and crucial information. Analyzing lengthier videos might provide challenges due to the time needed to process the entire video while maintaining its semantic features. In this situation, a dataset is collected in real-time to aid in the criminal investigation, which consequently requires the use of keyframes. The study illustrates that Content-based video retrieval (CBVR) enables the video analysis technique. Keyframe extraction is a significant component of video analysis. The main objective of key frame extraction is to reduce the amount of repetitive frames in a video, thereby improving the clarity and efficiency of the scenario. Moreover, it optimizes video sequences to expedite processing. The study paper introduces the Human Detected Keyframe Extraction algorithm (HDKFE), which utilizes a dual-stage methodological approach. The Faster Region-Convolutional Neural Network (Faster R-CNN) detects humans in surveillance by identifying frames that contain humans and reporting them using an optimized threshold value. The frames then identify a suitable keyframe by recognizing local maxima through the absolute difference between frames in the subsequent phase. This significantly decreases the complexity of long-term criminal investigations. The experimental report reveals that the HDKFE approach achieves a precision of 98.87% while minimizing both space and time complexity.Abstract
How to Cite
Downloads
Similar Articles
- Vijay Kumar, Priya Thapliyal, Rajesh Rayal, Baljeet Singh Saharan, Arun Kumar, Shweta Sahni, The Molecular Profiling and HCV RNA Quantification to Study the Distribution of Different HCV Genotypes in Accordance to Geographical Condition , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Anjum Parvez, Sandhya Verma, Rajesh Bahuguna, Scientific Methods in Protection of Wildlife: A Need of Time , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- R. Prabhu, P. Archana, S. Anusooya, P. Anuradha, Improved Steganography for IoT Network Node Data Security Promoting Secure Data Transmission using Generative Adversarial Networks , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Archana Bansal, On the Biology of Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, A COVID Net-predictor: A multi-head CNN and LSTM-based deep learning framework for COVID-19 diagnosis , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Suprabha Amit Kshatriya, Jaymin K Bhalani, Early detection of fire and smoke using motion estimation algorithms utilizing machine learning , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Saarumathi R, Ritha W, Impregnable inventory stewardship for a closed loop supply chain besides energy usage, defective production and green investment manoeuvring pentagonal fuzzy number , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

